RESUMO
Removal of Cd(II) and Pb(II) from aqueous solutions is a challenging task and the search for novel adsorbents is underway. This study examined the efficiency of nanobiochar (NB) and rice husk (RH) in the adsorption and removal of Cd(II) and Pb(II) from water. The effect of various physicochemical parameters such as initial pH, initial Cd and Pb concentration, adsorbent dosage, and contact time were tested. SEM/EDX images confirmed the adsorption of Pb and Cd with surface physical and chemical changes. The maximum Pb removal was noted at pH 6 using NB (96%) and at pH 8 for RH (90%), and the maximum Cd removal by NB was recorded at 8 pH (91%) and by RH at pH 6 (87%). The decline in adsorption intensity at lower pH suggested protonation of the adsorbent surface causing cation-cation repulsion. Most of the adsorption occurred within the initial 60 min. A continuous gradual increase in the adsorption with time suggested multilayer formation. Of the three isotherms, the Freundlich model fits the present data best, implying an infinite surface coverage and indicating the potential for multilayer adsorption of Pb and Cd on the surfaces of RH and NB adsorbents. In conclusion, this study highlights the promising potential of NB as a cost-effective adsorbent for the removal of Cd and Pb ions from aqueous solutions.
This study explores the effectiveness of utilizing low-cost natural and agricultural waste biomasses for removing Cd(II) and Pb(II) ions from aqueous solutions.
RESUMO
The present microstructural evaluation was carried out on the woods of three ethnobotanically important local fruit trees, namely, Ziziphus mauritiana Lam., Z. spina-christi (L.) Willd., and Z. nummularia (Burm.f.) Wight and Arn., of family Rhamnaceae from Cholistan Desert of Pakistan. Wood samples were sectioned with sliding sledge microtome to make permanent slides for observing different anatomical parameters under the light microscope. All selected species were observed to have diffuse-porous wood with indistinct growth rings. The vessels were rounded in outline in all the species studied and found mostly solitary or in radial multiples of 2 in Ziziphus mauritiana and Z. nummularia, while in radial multiples of 2 to 5 in Z. spina-christi. The intervessel pits were scalariform to opposite. The rays were uniseriate in Ziziphus mauritiana, while mostly were biseriate in Ziziphus spina-christi. Simple perforation plates and diffuse, confluent, and vasicentric types of axial parenchyma were present in all the selected species. The fibers were thin-walled and nonseptate. One-way ANOVA followed by the Tukey test was conducted to observe different anatomical variations within selected species. Principal component analysis revealed correlations among studied anatomical parameters. The number of rays per mm was comparatively larger in Ziziphus nummularia, showing its greater susceptibility to wood-deteriorating agents than in other selected species. The Runkel ratio indicated the selected species suitable for making paper.
RESUMO
Crustaceans such as shrimps and crabs, hold significant ecological significance and substantial economic value within marine ecosystems. However, their susceptibility to disease outbreaks and pathogenic infections has posed major challenges to production in recent decades. As invertebrate, crustaceans primarily rely on their innate immune system for defense, lacking the adaptive immune system found in vertebrates. Mucosal immunity, acting as the frontline defense against a myriad of pathogenic microorganisms, is a crucial aspect of their immune repertoire. This review synthesizes insights from comparative immunology, highlighting parallels between mucosal immunity in vertebrates and innate immune mechanisms in invertebrates. Despite lacking classical adaptive immunity, invertebrates, including crustaceans, exhibit immune memory and rely on inherent "innate immunity factors" to combat invading pathogens. Drawing on parallels from mammalian and piscine systems, this paper meticulously explores the complex role of mucosal immunity in regulating immune responses in crustaceans. Through the extrapolation from well-studied models like mammals and fish, this review infers the potential mechanisms of mucosal immunity in crustaceans and provides insights for research on mucosal immunity in crustaceans.
Assuntos
Crustáceos , Imunidade nas Mucosas , Animais , Crustáceos/imunologia , Imunidade InataRESUMO
Combining conventional laparoscopic techniques with cutting-edge technologies, such as robotics, improved imaging, and flexible equipment, hybrid laparoscopic techniques represent a revolutionary advancement in minimally invasive surgery. These methods have several benefits, such as increased accuracy, quicker healing periods, and fewer complications, which makes them especially useful in complicated multidisciplinary situations. The historical evolution, uses, benefits, and drawbacks of hybrid laparoscopic procedures are examined in this narrative review, which also covers urological, gastrointestinal, cardiothoracic, and gynecological surgery. The review focuses on how these methods promote interdisciplinary cooperation and creativity by enabling more accurate and successful surgical operations. It also discusses the equipment needs, integration difficulties, and technical difficulties that need to be resolved to reach the full potential of hybrid laparoscopic surgery. For hybrid laparoscopic procedures to become more widely used and effective in the future, there is a need for specialized training programs, interdisciplinary research collaborations, and ongoing technological advancements.
RESUMO
Multiple myeloma (MM) remains an incurable hematologic cancer leading to damage to the bone marrow that causes destructive bone lesions in addition to many other effects. I am a patient with MM who has undergone treatment to date since the diagnosis of this disease in December 2019. This paper reviews the treatments and observations made throughout this period. The salient results of such treatments are discussed in chronological order. During this period, my MM relapsed and then I was introduced to teclistamab treatment. The outcome of teclistamab treatment is quite promising, and I anticipate a longer life at a maintenance dose of this drug with a better quality of life. When writing this article, I am still receiving the teclistamab treatment cycles that maintain a constant normal level of my kappa-free light chain (FLC) and kappa/lambda ratio, with no significant side effects.
RESUMO
N-1,3-Dimethylbutyl-N'-phenyl-p-quinone diamine (6PPDQ) is a derivative of 6PPD, a synthetic antioxidant used in tire manufacturing to control the degradation caused by oxidation and heat aging. Its discovery in 2020 has raised important environmental concern, particularly regarding its association with acute mortality in coho salmon, prompting surge in research on its occurrence, fate, and transport in aquatic ecosystems. Despite this attention, there remain notable gaps in grasping the knowledge, demanding an in depth overview. Thus, this review consolidates recent studies to offer a thorough investigation of 6PPDQ's environmental dynamics, pathways into aquatic ecosystems, toxicity to aquatic organisms, and human health implications. Various aquatic species exhibit differential susceptibility to 6PPDQ toxicity, manifesting in acute mortalities, disruption of metabolic pathways, oxidative stress, behavioral responses, and developmental abnormalities. Whereas, understanding the species-specific responses, molecular mechanisms, and broader ecological implications requires further investigation across disciplines such as ecotoxicology, molecular biology, and environmental chemistry. Integration of findings emphasizes the complexity of 6PPDQ toxicity and its potential risks to human health. However, urgent priorities should be given to the measures like long-term monitoring studies to evaluate the chronic effects on aquatic ecosystems and the establishment of standardized toxicity testing protocols to ensure the result comparability and reproducibility. This review serves as a vital resource for researchers, policymakers, and environmental professionals seeking appraisals into the impacts of 6PPDQ contamination on aquatic ecosystems and human health.
Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Humanos , Animais , Monitoramento Ambiental/métodos , Quinonas/toxicidade , EcossistemaRESUMO
Increasing microplastic (MP) pollution, primarily from anthropogenic sources such as plastic film mulching, waste degradation, and agricultural practices, has emerged as a pressing global environmental concern. This review examines the direct and indirect effects of MPs on crops, both in isolation and in conjunction with other contaminants, to elucidate their combined toxicological impacts. Organic fertilizers predominantly contain 78.6% blue, 9.5% black, and 8.3% red MPs, while irrigation water in agroecosystems contains 66.2% white, 15.4% blue, and 8.1% black MPs, ranging from 0-1 mm to 4-5 mm in size. We elucidate five pivotal insights: Firstly, soil MPs exhibit affinity towards crop roots, seeds, and vascular systems, impeding water and nutrient uptake. Secondly, MPs induce oxidative stress in crops, disrupting vital metabolic processes. Thirdly, leachates from MPs elicit cytotoxic and genotoxic responses in crops. Fourthly, MPs disrupt soil biotic and abiotic dynamics, influencing water and nutrient availability for crops. Lastly, the cumulative effects of MPs and co-existing contaminants in agricultural soils detrimentally affect crop yield. Thus, we advocate agronomic interventions as practical remedies. These include biochar input, application of growth regulators, substitution of plastic mulch with crop residues, promotion of biological degradation, and encouragement of crop diversification. However, the efficacy of these measures varies based on MP type and dosage. As MP volumes increase, exploring alternative mitigation strategies such as bio-based plastics and environmentally friendly biotechnological solutions is imperative. Recognizing the persistence of plastics, policymakers should enact legislation favoring the mitigation and substitution of non-degradable materials with bio-derived or compostable alternatives. This review demonstrates the urgent need for collective efforts to alleviate MP pollution and emphasizes sustainable interventions for agricultural ecosystems.
Assuntos
Agricultura , Microplásticos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Solo/química , Agricultura/métodos , Recuperação e Remediação Ambiental/métodos , Produtos Agrícolas , Fertilizantes , Biodegradação Ambiental , PlásticosRESUMO
Particle classification plays a crucial role in various scientific and technological applications, such as differentiating between bacteria and viruses in healthcare applications or identifying and classifying cancer cells. This technique requires accurate and efficient analysis of particle properties. In this study, we investigated the integration of electrical and optical features through a multimodal approach for particle classification. Machine learning classifier algorithms were applied to evaluate the impact of combining these measurements. Our results demonstrate the superiority of the multimodal approach over analyzing electrical or optical features independently. We achieved an average test accuracy of 94.9% by integrating both modalities, compared to 66.4% for electrical features alone and 90.7% for optical features alone. This highlights the complementary nature of electrical and optical information and its potential for enhancing classification performance. By leveraging electrical sensing and optical imaging techniques, our multimodal approach provides deeper insights into particle properties and offers a more comprehensive understanding of complex biological systems.
Assuntos
Aprendizado de Máquina , Imagem Óptica , AlgoritmosRESUMO
The pervasive and steadily increasing presence of microplastics/nanoplastics (MPs/NPs) in aquatic environments has raised significant concerns regarding their potential adverse effects on aquatic organisms and their integration into trophic dynamics. This emerging issue has garnered the attention of (eco)toxicologists, promoting the utilization of toxicotranscriptomics to unravel the responses of aquatic organisms not only to MPs/NPs but also to a wide spectrum of environmental pollutants. This review aims to systematically explore the broad repertoire of predicted molecular responses by aquatic organisms, providing valuable intuitions into complex interactions between plastic pollutants and aquatic biota. By synthesizing the latest literature, present analysis sheds light on transcriptomic signatures like gene expression, interconnected pathways and overall molecular mechanisms influenced by various plasticizers. Harmful effects of these contaminants on key genes/protein transcripts associated with crucial pathways lead to abnormal immune response, metabolic response, neural response, apoptosis and DNA damage, growth, development, reproductive abnormalities, detoxification, and oxidative stress in aquatic organisms. However, unique challenge lies in enhancing the fingerprint of MPs/NPs, presenting complicated enigma that requires decoding their specific impact at molecular levels. The exploration endeavors, not only to consolidate existing knowledge, but also to identify critical gaps in understanding, push forward the frontiers of knowledge about transcriptomic signatures of plastic contaminants. Moreover, this appraisal emphasizes the imperative to monitor and mitigate the contamination of commercially important aquatic species by MPs/NPs, highlighting the pivotal role that regulatory frameworks must play in protecting all aquatic ecosystems. This commitment aligns with the broader goal of ensuring the sustainability of aquatic resources and the resilience of ecosystems facing the growing threat of plastic pollutants.
Assuntos
Organismos Aquáticos , Microplásticos , Transcriptoma , Poluentes Químicos da Água , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/genética , Animais , Transcriptoma/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/químicaRESUMO
Periphytic protozoa are esteemed icons of microbial fauna, renowned for their sensitivity and role as robust bioindicators, pivotal for assessing ecosystem stress and anthropogenic impacts on water quality. Despite their significance, research exploring the community dynamics of protozoan fauna across diverse water columns and depths in shallow waters has been notably lacking. This is the first study that examines the symphony of protozoan fauna in different water columns at varying depths (1, 2, 3.5 and 5 m), in South China Sea. Our findings reveal that vertical changes and environmental heterogeneity plays pivotal role in shaping the protozoan community structure, with distinct preferences observed in spirotrichea and phyllopharyngea classes at specific depths. Briefly, diversity metrics (i.e., both alpha and beta) showed significantly steady patterns at 2 m and 3.5 m depths as well as high homogeneity in most of the indices was observed. Co-associations between environmental parameters and protozoan communities demonstrated temperature, dissolved oxygen, salinity, and pH, are significant drivers discriminating species richness and evenness across all water columns. Noteworthy variations of the other environmental parameters such as SiO3-Si, PO4--P, and NO2--N at 1 m and NO3--N, and NH4+-N, at greater depths, signal the crucial role of nutrient dynamics in shaping the protozoan communities. Moreover, highly sensitive species like Anteholosticha pulchara, Apokeronopsis crassa, and Aspidisca steini in varying environmental conditions among vertical columns may serve as eco- indicators of water quality. Collectively, this study contributes a thorough comprehension of the fine-scale structure and dynamics of protozoan fauna within marine ecosystems, providing insightful perspectives for ecological and water quality assessment in ever-changing marine environments.
Assuntos
Ecossistema , China , Biodiversidade , Monitoramento Ambiental , Água do Mar , Organismos AquáticosRESUMO
In the current investigation, a total of 42 full-length, non-redundant small heat shock proteins (sHsp) were detected in Cyprinus carpio, Labeo rohita, Danio rerio, Salmo salar, Oncorhynchus mykiss, and Clupea harengus. The sHsp genes were classified into three groups based on phylogenetic analysis. All the sHsps were shown to have higher aliphatic index values, which is an indication that these proteins are more thermally stable. The hydrophilic nature of sHsps was deduced from the fact that all fish species had negative GRAVY scores. In all of the representative fish species, sHsp genes were assigned to distinct chromosomes in an inconsistent and unequal manner. Segmental duplications are the main events that have contributed to the expansion of the sHsp genes in all species. We were also able to determine the selective pressure that was placed on particular codons and discovered several significant coding sites within the coding region of sHsps. Eventually, diversifying positive selection was found to be connected with evolutionary changes in sHsp proteins, which showed that gene evolution controlled the fish adaption event in response to environmental conditions. Clarification of the links between sHsps and environmental stress in fish will be achieved through rigorous genomic comparison, which will also yield substantial new insights.
Assuntos
Proteínas de Choque Térmico Pequenas , Filogenia , Seleção Genética , Animais , Proteínas de Choque Térmico Pequenas/genética , Cipriniformes/genética , Proteínas de Peixes/genética , Sequência de Aminoácidos , Evolução MolecularRESUMO
Hereunder, we pioneered the synthesis of Copper Oxide nanoparticles (CuO NPs) utilizing Tragacanth gum (TG). The NPs were characterized using advanced techniques and assessed for different pharmaceutical and environmental perspectives. The successful formation of a colloidal NPs solution was confirmed by the appearance of a distinct black color and a distinct peak at 260 nm in UV-Visible spectrophotometry. The FTIR analysis unveiled a spectrum of functional groups responsible for the reduction and stabilization of CuO NPs. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) revealed size of NPs as 36.24 nm and 28 ± 04 nm respectively. Energy Dispersive X-ray (EDX) Analysis indicated weight percentages of 70.38 % for Cu and 18.88 % for O, with corresponding atomic percentages. The X-ray Diffraction (XRD) analysis revealed the orthorhombic crystal structure of the prepared CuO NPs. Antimicrobial assessments through disc-diffusion assays demonstrated significant zones of inhibition (ZOI) against gram-positive bacterial strains (Bacillus Halodurans and Micrococcus leutus) and a gram-negative bacterial strain (E. coli). Against the fungal strain Aspergillus niger, a ZOI of 18.5 ± 0.31 mm was observed. The NPs exhibited remarkable antioxidant potential determined through 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and H2O2 scavenging assays. At a concentration of 3 mg/mL, the NPs demonstrated biofilm inhibition rates of 96 %, 90 %, 89.60 %, and 72.10 % against Micrococcus luteus, Bacillus halodurans, MRSA and E.coli respectively. Furthermore, the CuO NPs showed a high photocatalytic potential towards the degradation of safranin dye under sunlight irradiation. In conclusion, the findings underline the promising multifunctional properties of TG-based CuO NPs for different practical applications.
Assuntos
Biofilmes , Cobre , Nanopartículas Metálicas , Tragacanto , Cobre/química , Tragacanto/química , Biofilmes/efeitos dos fármacos , Catálise , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Aspergillus niger/efeitos dos fármacos , Processos FotoquímicosRESUMO
Photocatalytic H2 production with selective oxidation of organic moieties in an aqueous medium is a fascinating research area. However, the rational design of photocatalysts and their photocatalytic performance are still inadequate. In this work, we efficiently synthesized the MoS2 tipped CdS nanowires (NWs) photocatalyst using soft templates via the two-step hydrothermal method for efficient H2 production with selective oxidation of benzyl alcohol (BO) under visible light illumination. The optimized MoS2 tipped CdS NWs (20 % MoS2) photocatalyst exhibits the highest photocatalytic H2 production efficiency of 13.55 mmol g-1 h-1 with 99 % selective oxidation of BO, which was 42.34 and 2.21 times greater photocatalytic performance than that of pristine CdS NWs and MoS2/CdS NWs, respectively. The directional loading of MoS2 at the tips of CdS NWs (as compared to nondirectional MoS2 at CdS NWs) is the key factor towards superior H2 production with 99 % selective oxidation of BO and has an inhibitory effect on the photo corrosion of pristine CdS NWs. Therefore, the amazing enhancement in the photocatalytic performance and selectivity of optimized MoS2 tipped CdS NWs (20 % MoS2) photocatalyst is due to the spatial separation of their photoexcited charge carriers through the Schottky junction. Moreover, the unique structure of the MoS2 flower at the tip of 1D CdS NWs offers separate active sites for adsorption and surface reactions such as H2 production at the MoS2 flower (confirmed by Pt photo deposition) and subsequently the selective oxidation of BO at the stem of CdS NWs. This rational design of a photocatalyst could be an inspiring work for the further development of an efficient photocatalytic system for H2 production with selective oxidation of BO (a strategy of mashing two potatoes with one fork).
RESUMO
Yersinia pestis, the causative agent of plague, is a gram-negative bacterium that can be fatal if not treated properly. Three types of plague are currently known: bubonic, septicemic, and pneumonic plague, among which the fatality rate of septicemic and pneumonic plague is very high. Bubonic plague can be treated, but only if antibiotics are used at the initial stage of the infection. But unfortunately, Y. pestis has also shown resistance to certain antibiotics such as kanamycin, minocycline, tetracycline, streptomycin, sulfonamides, spectinomycin, and chloramphenicol. Despite tremendous progress in vaccine development against Y. pestis, there is no proper FDA-approved vaccine available to protect people from its infections. Therefore, effective broad-spectrum vaccine development against Y. pestis is indispensable. In this study, vaccinomics-assisted immunoinformatics techniques were used to find possible vaccine candidates by utilizing the core proteome prepared from 58 complete genomes of Y. pestis. Human non-homologous, pathogen-essential, virulent, and extracellular and membrane proteins are potential vaccine targets. Two antigenic proteins were prioritized for the prediction of lead epitopes by utilizing reverse vaccinology approaches. Four vaccine designs were formulated using the selected B- and T-cell epitopes coupled with appropriate linkers and adjuvant sequences capable of inducing potent immune responses. The HLA allele population coverage of the T-cell epitopes selected for vaccine construction was also analyzed. The V2 constructs were top-ranked and selected for further analysis on the basis of immunological, physicochemical, and immune-receptor docking interactions and scores. Docking and molecular dynamic simulations confirmed the stability of construct V2 interactions with the host immune receptors. Immune simulation analysis anticipated the strong immune profile of the prioritized construct. In silico restriction cloning ensured the feasible cloning ability of the V2 construct in the expression system of E. coli strain K12. It is anticipated that the designed vaccine construct may be safe, effective, and able to elicit strong immune responses against Y. pestis infections and may, therefore, merit investigation using in vitro and in vivo assays.
Assuntos
Peste , Yersinia pestis , Yersinia pestis/imunologia , Yersinia pestis/genética , Humanos , Peste/prevenção & controle , Peste/imunologia , Vacina contra a Peste/imunologia , Vacina contra a Peste/genética , Genoma Bacteriano , Desenvolvimento de Vacinas , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Vacinas Sintéticas/imunologia , AnimaisRESUMO
TGF-ß supergene family has a wide range of physiological functions including cell adhesion, motility, proliferation, apoptosis, and differentiation. We systematically analyzed and characterized the TGF-ß gene superfamily from the whole blue whale (Balaenoptera musculus) genome, using comparative genomic and evolutionary analysis. We identified 30 TGF-ß genes and were split into two subgroups, BMP-like and TGF-like. All TGF-ß proteins demonstrating a basic nature, with the exception of BMP1, BMP2, BMP10, GDF2, MSTN, and NODAL modulator, had acidic characteristics. All the blue whale (B. musculus) TGF-ß proteins, excluding BMP1, are thermostable based on aliphatic index. The instability index showed all proteins except the NODAL modulator was unstable. TGF-ß proteins showed a hydrophilic character, with the exception of GDF1 and INHBC. Moreover, all the detected TGF-ß genes showed evolutionary conserved nature. A segmental duplication was indicated by TGF-ß gene family, and the Ka/Ks ratio showed that the duplicated gene pairs were subjected to selection pressure, indicating both purifying and positive selection pressure. Two possible recombination breakpoints were also predicted. This study provides insights into the genetic characterization and evolutionary aspects of the TGF-ß superfamily in blue whales (B. musculus).
Assuntos
Balaenoptera , Evolução Molecular , Família Multigênica , Filogenia , Fator de Crescimento Transformador beta , Animais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Balaenoptera/genética , Genômica , Genoma/genética , Seleção Genética , Duplicação GênicaRESUMO
By dry crystallization, concentrations of unsaturated fatty acids and bioactive compounds can be increased in olein and super-olein fractions in vegetable oils. Among all sources of vegetable oils, safflower oil (SO) possesses the maximum linoleic acid content. To boost the industrial applications of SO, two variants were produced by single- and two-stage crystallization. This study aimed to determine the fatty acid compositions, phenolic compounds, phytosterols, and oxidative stability of fractionated olein (OF) and double-fractionated olein (DFO) produced by dry crystallization. For this, SO was cooled to -45 °C and filtered, the filtrate was denoted as single-fractionated olein (OF), and 40% of this section was taken for analytical purposes, while the remaining 60% was again cooled to -70 °C and filtered, and the filtrate was denoted as double-fractionated olein (DFO). Unfractionated safflower (SO) was used as a control, filled in amber glass bottles, and stored at 20-25 °C for 90 days. Fatty acid compositions and phytosterols were determined by gas chromatography-mass spectrometry (GC-MS). Phenolic compounds and induction periods were determined by high-performance liquid chromatography (HPLC) and Rancimat. GC-MS analysis revealed that the C18:2 contents of SO, OF, and DFO were 77.63 ± 0.82, 81.57 ± 0.44, and 89.26 ± 0.48 mg/100 g (p < 0.05), respectively. The C18:1 contents of SO, OF, and DFO were 6.38 ± 0.19, 7.36 ± 0.24, and 9.74 ± 0.32 mg/100 g (p < 0.05), respectively. HPLC analysis showed that phenolic compounds were concentrated in the low-melting-point fractions. In DFO, concentrations of tyrosol, rutin, vanillin, ferulic acid, and sinapic acid were 57.36 ± 0.12, 129.45 ± 0.38, 165.11 ± 0.55, 183.61 ± 0.15, 65.94 ± 0.11, and 221.75 ± 0.29 mg/100 g, respectively. In SO, concentrations of tyrosol, rutin, vanillin, ferulic acid, and sinapic acid were 24.79 ± 0.08, 78.93 ± 0.25, 115.67 ± 0.41, 34.89 ± 0.51, and 137.26 ± 0.08 mg/100 g, respectively. In OF, concentrations of tyrosol, rutin, vanillin, ferulic acid, and sinapic acid were 35.96 ± 0.20, 98.69 ± 0.64, 149.14 ± 0.13, 57.53 ± 0.74, and 188.28 ± 0.82 mg/100 g, respectively. The highest concentrations of brassicasterol, campesterol, stigmasterol, ß-sitosterol, avenasterol, stigmastenol, and avenasterol were noted in DFO followed by OF and SO. The total antioxidant capacities of SO, OF, and DFO were 54.78 ± 0.12, 71.36 ± 0.58, and 86.44 ± 0.28%, respectively. After the end of the storage time, the peroxide values (POVs) of SO, OF, and DFO stored for 3 months were 0.68, 0.85, and 1.16 mequiv O2/kg, respectively, with no difference in the free fatty acid content.
RESUMO
BACKGROUND: Breast cancer is a highly prevalent and life-threatening ailment that is commonly detected among the females. The downregulation of PTEN in breast cancer is associated with a poor prognosis, aggressive tumor type, and metastasis to lymph nodes, as it activates the pro-survival pathway PI3K/AKT, which is considered the ultimate proliferative pathway. MATERIAL AND METHODS: The mRNA expression of PTEN and AKT genes was investigated using RT-qPCR and TaqMan primer probe chemistry. Moreover DNA was also isolated from the same tissue samples and exonic regions of both genes were amplified for mutational analysis. The proteins expression of PTEN and AKT from seven human breast cancer cell lines was checked through western blot experiments. RESULT: The study revealed a decrease in PTEN expression in 73.3% of the samples, whereas an increase in AKT expression in 40% of samples was observed when compared to the distant normal breast tissue. Conversely, the remaining 60% of samples exhibited a decrease in AKT mRNA expression. There was no observed alteration in the genetic sequence of AKT and PTEN within the targeted amplified regions of breast cancer samples. The high levels of PTEN protein in T-47D and MDA-MB-453 resulted in a lower p-AKT. Two cell lines ZR-75-1 and MDA-MB-468 appeared to be PTEN negative on western blot but mRNA was detected on RT-qPCR. CONCLUSION: In breast cancer the status/expression of PTEN & AKT at mRNA and protein level might be obliging in forecasting the path of disease progression, treatment and prognosis.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Células MCF-7 , RNA Mensageiro/genéticaRESUMO
The investigation focused on creating and studying a new 2D-2D S-scheme CdS/g-C3N4 heterojunction photocatalyst. Various techniques examined its structure, composition, and optical properties. This included XRD, XPS, EDS, SEM, TEM, HRTEM, DRS, and PL. The heterojunction showed a reduced charge recombination rate and more excellent stability, helping to lessen photocorrosion. This was due to photogenerated holes moving more quickly out of the CdS valence band. The interface between g-C3N4 and CdS favored a synergistic charge transfer. A suitable flat band potential measurement supported enhanced reactive oxygen species (ROS) generation in degrading 4-nitrophenol and 2-nitrophenol. This resulted in remarkable degradation efficiency of up to 99% and mineralization of up to 79%. The findings highlighted the practical design of the new 2D-2D S-scheme CdS/g-C3N4 heterojunction photocatalyst and its potential application in various energy and environmental settings, such as pollutant removal, hydrogen production, and CO2 conversion.
RESUMO
Bufo bufo is a living example of evolutionary processes due to its numerous physiological and ecological adaptations. This is the first study to genetically characterize the TGF-ß gene family in B. bufo at the genome-wide level, and a total of 28 TGF-ß gene family homologs are identified. Physicochemical characteristics of TGF-ß homologs exhibit a basic nature except for BMP1, BMP4, BMP10, BMP15, AMH, INHA, NODAL Modulator and TGFB1. Phylogenetic analysis divided the TGF-ß gene family homologs into 2 major clades along with other vertebrate species. In domain and motif composition analysis, the gene structure for all TGF-ß homologs exhibited homogeneity except BMP1. We have identified the TGF-ß propeptide domain together with the TGF-ß in all family homologs of TGF-ß superfamily. Gene structure comparisons indicated that the TGF-ß gene family have arisen by gene duplications. We also identified 10 duplicated gene pairs, all of which were detected to be segmental duplications. The Ka/Ks test ratio findings for every pair of genes revealed that none of the ratios surpassed 1 except for one gene pair (INHA/BMP1), indicating that these proteins are under positive selection. Circos analysis showed that TGF-ß gene family homologs are arranged in 11 dispersed clusters and all were segmentally arrayed in the genome. This study provides a molecular basis for TGF-ß ligand protein functional analysis and may serve as a reference for in-depth phylogenomics and may promote the development of novel strategies.Communicated by Ramaswamy H. Sarma.
RESUMO
Glucose is an important biomarker for diagnosing and prognosing various diseases, including diabetes and hypoglycemia, which can have severe side effects, symptoms, and even lead to death in patients. As a result, there is a need for quick and economical glucose level measurements to help identify those at potential risk. With the increase in smartphone users, portable smartphone glucose sensors are becoming popular. In this paper, we present a disposable microfluidic glucose sensor that accurately and rapidly quantifies glucose levels in human urine using a combination of colorimetric analysis and computer vision. This glucose sensor implements a disposable microfluidic device based on medical-grade tapes and glucose analysis strips on a glass slide integrated with a custom-made polydimethylsiloxane (PDMS) micropump that accelerates capillary flow, making it economical, convenient, rapid, and equipment-free. After absorbing the target solution, the disposable device is slid into the 3D-printed main chassis and illuminated exclusively with Light Emitting Diode (LED) illumination, which is pivotal to color-sensitive experiments. After collecting images, the images are imported into the algorithm to measure the glucose levels using computer vision and average RGB values measurements. This article illustrates the impressive accuracy and consistency of the glucose sensor in quantifying glucose in sucrose water. This is evidenced by the close agreement between the computer vision method used by the sensor and the traditional method of measuring in the biology field, as well as the small variation observed between different sensor performances. The exponential regression curve used in the study further confirms the strong relationship between glucose concentrations and average RGB values, with an R-square value of 0.997 indicating a high degree of correlation between these variables. The article also emphasizes the potential transferability of the solution described to other types of assays and smartphone-based sensors.