Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cancer Cell ; 42(5): 759-779.e12, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744245

RESUMO

The lack of comprehensive diagnostics and consensus analytical models for evaluating the status of a patient's immune system has hindered a wider adoption of immunoprofiling for treatment monitoring and response prediction in cancer patients. To address this unmet need, we developed an immunoprofiling platform that uses multiparameter flow cytometry to characterize immune cell heterogeneity in the peripheral blood of healthy donors and patients with advanced cancers. Using unsupervised clustering, we identified five immunotypes with unique distributions of different cell types and gene expression profiles. An independent analysis of 17,800 open-source transcriptomes with the same approach corroborated these findings. Continuous immunotype-based signature scores were developed to correlate systemic immunity with patient responses to different cancer treatments, including immunotherapy, prognostically and predictively. Our approach and findings illustrate the potential utility of a simple blood test as a flexible tool for stratifying cancer patients into therapy response groups based on systemic immunoprofiling.


Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/sangue , Imunoterapia/métodos , Citometria de Fluxo/métodos , Transcriptoma , Prognóstico , Perfilação da Expressão Gênica/métodos , Feminino , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia
2.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746475

RESUMO

Several decades of heterochronic parabiosis (HCPB) studies have demonstrated the restorative impact of young blood, and deleterious influence of aged blood, on physiological function and homeostasis across tissues, although few of the factors responsible for these observations have been identified. Here we develop an in vitro HCPB system to identify these circulating factors, using replicative lifespan (RLS) of primary human fibroblasts as an endpoint of cellular health. We find that RLS is inversely correlated with serum donor age and sensitive to the presence or absence of specific serum components. Through in vitro HCPB, we identify the secreted protein pigment epithelium-derived factor (PEDF) as a circulating factor that extends RLS of primary human fibroblasts and declines with age in mammals. Systemic administration of PEDF to aged mice reverses age-related functional decline and pathology across several tissues, improving cognitive function and reducing hepatic fibrosis and renal lipid accumulation. Together, our data supports PEDF as a systemic mediator of the effect of young blood on organismal health and homeostasis and establishes our in vitro HCPB system as a valuable screening platform for the identification of candidate circulating factors involved in aging and rejuvenation.

3.
Commun Biol ; 7(1): 392, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555407

RESUMO

With the increased use of gene expression profiling for personalized oncology, optimized RNA sequencing (RNA-seq) protocols and algorithms are necessary to provide comparable expression measurements between exome capture (EC)-based and poly-A RNA-seq. Here, we developed and optimized an EC-based protocol for processing formalin-fixed, paraffin-embedded samples and a machine-learning algorithm, Procrustes, to overcome batch effects across RNA-seq data obtained using different sample preparation protocols like EC-based or poly-A RNA-seq protocols. Applying Procrustes to samples processed using EC and poly-A RNA-seq protocols showed the expression of 61% of genes (N = 20,062) to correlate across both protocols (concordance correlation coefficient > 0.8, versus 26% before transformation by Procrustes), including 84% of cancer-specific and cancer microenvironment-related genes (versus 36% before applying Procrustes; N = 1,438). Benchmarking analyses also showed Procrustes to outperform other batch correction methods. Finally, we showed that Procrustes can project RNA-seq data for a single sample to a larger cohort of RNA-seq data. Future application of Procrustes will enable direct gene expression analysis for single tumor samples to support gene expression-based treatment decisions.


Assuntos
Perfilação da Expressão Gênica , RNA , Humanos , Fixação de Tecidos/métodos , Perfilação da Expressão Gênica/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Aprendizado de Máquina
4.
Aging Cell ; 22(9): e13908, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345431

RESUMO

Glaucoma is a leading cause of irreversible blindness, with advanced age being the single most significant risk factor. However, the mechanisms underlying the relationship between aging and glaucoma remain unclear. Genome-wide association studies (GWAS) have successfully identified genetic variants strongly associated with increased glaucoma risk. Understanding how these variants function in pathogenesis is crucial for translating genetic associations into molecular mechanisms and, ultimately, clinical applications. The chromosome 9p21.3 locus is among the most replicated glaucoma risk loci discovered by GWAS. Nonetheless, the absence of protein-coding genes in the locus makes interpreting the disease association challenging, leaving the causal variant and molecular mechanism elusive. In this study, we report the identification of a functional glaucoma risk variant, rs6475604. By employing computational and experimental methods, we demonstrated that rs6475604 resides in a repressive regulatory element. Risk allele of rs6475604 disrupts the binding of YY1, a transcription factor known to repress the expression of a neighboring gene in 9p21.3, p16INK4A, which plays a crucial role in cellular senescence and aging. These findings suggest that the glaucoma disease variant contributes to accelerated senescence, providing a molecular link between glaucoma risk and an essential cellular mechanism for human aging.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Glaucoma , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glaucoma/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Fatores de Transcrição/genética
5.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292828

RESUMO

MicroRNAs (miRNAs) have been demonstrated to modulate life span in the invertebrates C. elegans and Drosophila by targeting conserved pathways of aging, such as insulin/IGF-1 signaling (IIS). However, a role for miRNAs in modulating human longevity has not been fully explored. Here we investigated novel roles of miRNAs as a major epigenetic component of exceptional longevity in humans. By profiling the miRNAs in B-cells from Ashkenazi Jewish centenarians and 70-year-old controls without a longevity history, we found that the majority of differentially expressed miRNAs were upregulated in centenarians and predicted to modulate the IIS pathway. Notably, decreased IIS activity was found in B cells from centenarians who harbored these upregulated miRNAs. miR-142-3p, the top upregulated miRNA, was verified to dampen the IIS pathway by targeting multiple genes including GNB2, AKT1S1, RHEB and FURIN . Overexpression of miR-142-3p improved the stress resistance under genotoxicity and induced the impairment of cell cycle progression in IMR90 cells. Furthermore, mice injected with a miR-142-3p mimic showed reduced IIS signaling and improved longevity-associated phenotypes including enhanced stress resistance, improved diet/aging-induced glucose intolerance, and longevity-associated change of metabolic profile. These data suggest that miR-142-3p is involved in human longevity through regulating IIS-mediated pro-longevity effects. This study provides strong support for the use of miR-142-3p as a novel therapeutic to promote longevity or prevent aging/aging-related diseases in human.

6.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292862

RESUMO

Glaucoma is a leading cause of irreversible blindness, with advanced age being the single most significant risk factor. However, the mechanisms underlying the relationship between aging and glaucoma remain unclear. Genome-wide association studies (GWAS) have successfully identified genetic variants strongly associated with increased glaucoma risk. Understanding how these variants function in pathogenesis is crucial for translating genetic associations into molecular mechanisms and, ultimately, clinical applications. The chromosome 9p21.3 locus is among the most replicated glaucoma risk loci discovered by GWAS. Nonetheless, the absence of protein-coding genes in the locus makes interpreting the disease association challenging, leaving the causal variant and molecular mechanism elusive. In this study, we report the identification of a functional glaucoma risk variant, rs6475604. By employing computational and experimental methods, we demonstrated that rs6475604 resides in a repressive regulatory element. Risk allele of rs6475604 disrupts the binding of YY1, a transcription factor known to repress the expression of a neighboring gene in 9p21.3, p16INK4A, which plays a crucial role in cellular senescence and aging. These findings suggest that the glaucoma disease variant contributes to accelerated senescence, providing a molecular link between glaucoma risk and an essential cellular mechanism for human aging.

7.
Cancer Cell ; 40(8): 879-894.e16, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944503

RESUMO

Cellular deconvolution algorithms virtually reconstruct tissue composition by analyzing the gene expression of complex tissues. We present the decision tree machine learning algorithm, Kassandra, trained on a broad collection of >9,400 tissue and blood sorted cell RNA profiles incorporated into millions of artificial transcriptomes to accurately reconstruct the tumor microenvironment (TME). Bioinformatics correction for technical and biological variability, aberrant cancer cell expression inclusion, and accurate quantification and normalization of transcript expression increased Kassandra stability and robustness. Performance was validated on 4,000 H&E slides and 1,000 tissues by comparison with cytometric, immunohistochemical, or single-cell RNA-seq measurements. Kassandra accurately deconvolved TME elements, showing the role of these populations in tumor pathogenesis and other biological processes. Digital TME reconstruction revealed that the presence of PD-1-positive CD8+ T cells strongly correlated with immunotherapy response and increased the predictive potential of established biomarkers, indicating that Kassandra could potentially be utilized in future clinical applications.


Assuntos
Neoplasias , Transcriptoma , Algoritmos , Linfócitos T CD8-Positivos , Humanos , Aprendizado de Máquina , Neoplasias/genética , RNA-Seq , Análise de Sequência de RNA , Microambiente Tumoral/genética
8.
PLoS One ; 15(5): e0233373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453743

RESUMO

Targeted gene integration via precise homologous recombination (HR)-based gene editing has the potential to correct genetic diseases. AAV (adeno-associated virus) can mediate nuclease-free gene integration at a disease-causing locus. Therapeutic application of AAV gene integration requires quantitative molecular characterization of the edited sequence that overcome technical obstacles such as excess episomal vector genomes and lengthy homology arms. Here we describe a novel molecular methodology that utilizes quantitative next-generation sequencing to characterize AAV-mediated targeted insertion and detects the presence of unintended mutations. The methods described here quantify targeted insertion and query the entirety of the target locus for the presence of insertions, deletions, single nucleotide variants (SNVs) and integration of viral components such as inverted terminal repeats (ITR). Using a humanized liver murine model, we demonstrate that hematopoietic stem-cell derived AAVHSC15 mediates in vivo targeted gene integration into human chromosome 12 at the PAH (phenylalanine hydroxylase) locus at 6% frequency, with no sign of co-incident random mutations at or above a lower limit of detection of 0.5% and no ITR sequences at the integration sites. Furthermore, analysis of heterozygous variants across the targeted locus using the methods described shows a pattern of strand cross-over, supportive of an HR mechanism of gene integration with similar efficiencies across two different haplotypes. Rapid advances in the application of AAV-mediated nuclease-free target integration, or gene editing, as a new therapeutic modality requires precise understanding of the efficiency and the nature of the changes being introduced to the target genome at the molecular level. This work provides a framework to be applied to homologous recombination gene editing platforms for assessment of introduced and natural sequence variation across a target site.


Assuntos
Dependovirus/fisiologia , Edição de Genes/métodos , Fígado/química , Fenilalanina Hidroxilase/genética , Animais , Vetores Genéticos/administração & dosagem , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Modelos Animais , Mutação , Análise de Sequência de DNA , Integração Viral
9.
Front Genet ; 9: 59, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527222

RESUMO

Cellular senescence is a state of irreversible cellular growth arrest accompanied by distinct changes in gene expression and the acquisition of a complex proinflammatory secretory profile termed the senescence-associated secretory phenotype (SASP). Senescent cells accumulate in aged tissues and contribute to age-related disease in mice. Increasing evidence that selective removal of senescent cells can ameliorate diseases of late life and extend lifespan in mice has given rise to the development of senolytics that target senescent cells as anti-aging therapeutics. To realize the full potential of senolytic medicine, robust biomarkers of senescence must be in place to monitor the in vivo appearance of senescent cells with age, as well as their removal by senolytic treatments. Here we investigate the dynamic changes in expression of the molecular hallmarks of senescence, including p16Ink4a , p21Cip1 , and SASP factors in multiple tissues in mice during aging. We show that expression of these markers is highly variable in age- and tissue-specific manners. Nevertheless, Mmp12 represents a robust SASP factor that shows consistent age-dependent increases in expression across all tissues analyzed in this study and p16Ink4a expression is consistently increased with age in most tissues. Likewise, in humans CDKN2A (p16Ink4a ) is one of the top genes exhibiting elevated expression in multiple tissues with age as revealed by data analysis of the Genotype-Tissue Expression (GTEx) project. These results support the targeting of p16Ink4a expressing-cells in senolytic treatments, while emphasizing the need to establish a panel of robust biomarkers of senescence in vivo in both mice and humans.

10.
Exp Biol Med (Maywood) ; 242(13): 1325-1334, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28581336

RESUMO

Genome-wide association studies have shown that the far majority of disease-associated variants reside in the non-coding regions of the genome, suggesting that gene regulatory changes contribute to disease risk. To identify truly causal non-coding variants and their affected target genes remains challenging but is a critical step to translate the genetic associations to molecular mechanisms and ultimately clinical applications. Here we review genomic/epigenomic resources and in silico tools that can be used to identify causal non-coding variants and experimental strategies to validate their functionalities. Impact statement Most signals from genome-wide association studies (GWASs) map to the non-coding genome, and functional interpretation of these associations remained challenging. We reviewed recent progress in methodologies of studying the non-coding genome and argued that no single approach allows one to effectively identify the causal regulatory variants from GWAS results. By illustrating the advantages and limitations of each method, our review potentially provided a guideline for taking a combinatorial approach to accurately predict, prioritize, and eventually experimentally validate the causal variants.


Assuntos
Biologia Computacional/métodos , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico/genética , Humanos
11.
Nat Neurosci ; 18(9): 1256-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214369

RESUMO

We found that a neuron-specific isoform of LSD1, LSD1n, which results from an alternative splicing event, acquires a new substrate specificity, targeting histone H4 Lys20 methylation, both in vitro and in vivo. Selective genetic ablation of LSD1n led to deficits in spatial learning and memory, revealing the functional importance of LSD1n in neuronal activity-regulated transcription that is necessary for long-term memory formation. LSD1n occupied neuronal gene enhancers, promoters and transcribed coding regions, and was required for transcription initiation and elongation steps in response to neuronal activity, indicating the crucial role of H4K20 methylation in coordinating gene transcription with neuronal function. Our results indicate that this alternative splicing of LSD1 in neurons, which was associated with altered substrate specificity, serves as a mechanism acquired by neurons to achieve more precise control of gene expression in the complex processes underlying learning and memory.


Assuntos
Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Memória de Longo Prazo/fisiologia , Transcrição Gênica/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Feminino , Deleção de Genes , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
12.
Front Genet ; 5: 211, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136348

RESUMO

A quantitative trait locus (QTL) in the nematode C. elegans, "lsq4," was recently implicated by mapping longevity genes. QTLs for lifespan and three stress-resistance traits coincided within a span of <300 kbp, later narrowed to <200 kbp. A single gene in this interval is now shown to modulate all lsq4-associated traits. Full-genome analysis of transcript levels indicates that lsq4 contains a dimorphic gene governing the expression of many sperm-specific genes, suggesting an effect on spermatogenesis. Quantitative analysis of allele-specific transcripts encoded within the lsq4 interval revealed significant, 2- to 15-fold expression differences for 10 of 33 genes. Fourteen "dual-candidate" genes, implicated by both position and expression, were tested for RNA-interference effects on QTL-linked traits. In a strain carrying the shorter-lived allele, knockdown of rec-8 (encoding a meiotic cohesin) reduced its transcripts 4-fold, to a level similar to the longer-lived strain, while extending lifespan 25-26%, whether begun before fertilization or at maturity. The short-lived lsq4 allele also conferred sensitivity to oxidative and thermal stresses, and lower male frequency (reflecting X-chromosome non-disjunction), traits reversed uniquely by rec-8 knockdown. A strain bearing the longer-lived lsq4 allele, differing from the short-lived strain at <0.3% of its genome, derived no lifespan or stress-survival benefit from rec-8 knockdown. We consider two possible explanations: high rec-8 expression may include increased "leaky" expression in mitotic cells, leading to deleterious destabilization of somatic genomes; or REC-8 may act entirely in germ-line meiotic cells to reduce aberrations such as non-disjunction, thereby blunting a stress-resistance response mediated by innate immunity. Replicative lifespan was extended 20% in haploid S. cerevisiae (BY4741) by deletion of REC8, orthologous to nematode rec-8, implying that REC8 disruption of mitotic-cell survival is widespread, exemplifying antagonistic pleiotropy (opposing effects on lifespan vs. reproduction), and/or balancing selection wherein genomic disruption increases genetic variation under harsh conditions.

13.
Biol Chem ; 395(2): 157-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24127542

RESUMO

Septins are a large family of GTP-binding proteins abnormally expressed in many solid tumors. Septin 9 (SEPT9) in particular has been found overexpressed in diverse human tumors including breast, head and neck, ovarian, endometrial, kidney, and pancreatic cancer. Although we previously reported SEPT9 amplification in breast cancer, we now show specifically that high-grade breast carcinomas, the subtype with worst clinical outcome, exhibit a significant increase in SEPT9 copy number when compared with other tumor grades. We also present, for the first time, a sensitive and quantitative measure of seven (SEPT9_v1 through SEPT9_v7) isoform variant mRNA levels in mammary epithelial cells. SEPT9_v1, SEPT9_v3, SEPT9_v6, and SEPT9_v7 isoforms were expressed at the highest levels followed by SEPT9_v2 and SEPT9_v5, whereas SEPT9_v4 was almost undetectable. Although most of the isoforms were upregulated in primary tumor tissues relative to the patient-matched peritumoral tissues, SEPT9_v4 remained the lowest expressing isoform. This comprehensive analysis of SEPT9 provides substantial evidence for increased SEPT9 expression as a consequence of genomic amplification and is the first study to profile SEPT9_v1 through SEPT9_v7 isoform-specific mRNA expression in tumor and nontumor tissues from patients with breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Mama/metabolismo , Septinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/patologia , Neoplasias da Mama/patologia , Células Epiteliais/metabolismo , Feminino , Amplificação de Genes , Dosagem de Genes , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Septinas/genética
14.
J Gerontol A Biol Sci Med Sci ; 67(4): 376-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22156437

RESUMO

Age is a major risk factor for many human diseases. Extremely long-lived individuals, such as centenarians, have managed to ward off age-related diseases and serve as human models to search for the genetic factors that influence longevity. The discovery of evolutionarily conserved pathways with major impact on life span in animal models has provided tantalizing opportunities to test the relevance of these pathways for human longevity. Here we specifically focus on the insulin/insulin-like growth factor-1 signaling as a prime candidate pathway. Coupled with the rapid advances in ultra high-throughput sequencing technologies, it is now feasible to comprehensively analyze all possible sequence variants in candidate genes segregating with a longevity phenotype and to investigate the functional consequences of the associated variants. A better understanding of the functional genes that affect healthy longevity in humans may lead to a rational basis for intervention strategies that can delay or prevent age-related diseases.


Assuntos
Longevidade/genética , Transdução de Sinais/genética , Idoso de 80 Anos ou mais , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Estudos de Associação Genética , Variação Genética , Humanos , Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos
15.
Aging (Albany NY) ; 3(2): 125-47, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21386131

RESUMO

Many lifespan-modulating genes are involved in either generation of oxidative substrates and end-products, or their detoxification and removal. Among such metabolites, only lipoperoxides have the ability to produce free-radical chain reactions. For this study, fatty-acid profiles were compared across a panel of C. elegans mutants that span a tenfold range of longevities in a uniform genetic background. Two lipid structural properties correlated extremely well with lifespan in these worms: fatty-acid chain length and susceptibility to oxidation both decreased sharply in the longest-lived mutants (affecting the insulinlike-signaling pathway). This suggested a functional model in which longevity benefits from a reduction in lipid peroxidation substrates, offset by a coordinate decline in fatty-acid chain length to maintain membrane fluidity. This model was tested by disrupting the underlying steps in lipid biosynthesis, using RNAi knockdown to deplete transcripts of genes involved in fatty-acid metabolism. These interventions produced effects on longevity that were fully consistent with the functions and abundances of their products. Most knockdowns also produced concordant effects on survival of hydrogen peroxide stress, which can trigger lipoperoxide chain reactions.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Lipídeos/biossíntese , Longevidade/fisiologia , Estresse Oxidativo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Interferência de RNA , Taxa de Sobrevida , Transcrição Gênica
16.
Aging Cell ; 10(3): 551-4, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21388493

RESUMO

Dampening of insulin/insulin-like growth factor-1 (IGF1) signaling results in the extension of lifespan in invertebrate as well as murine models. The impact of this evolutionarily conserved pathway on the modulation of human lifespan remains unclear. We previously identified two IGF1R mutations (Ala-37-Thr and Arg-407-His) that are enriched in Ashkenazi Jewish centenarians as compared to younger controls and are associated with the reduced activity of the IGF1 receptor as measured in immortalized lymphocytes. To determine whether these human longevity-associated IGF1R mutations affect IGF1 signaling, we engineered mouse embryonic fibroblasts (MEFs) expressing the different human IGF1R variants in a mouse Igf1r null background. The results indicate that MEFs expressing the human longevity-associated IGF1R mutations attenuated IGF1 signaling, as demonstrated by significant reduction in phosphorylation of both IGF1R and AKT after IGF1 treatment, in comparison with MEFs expressing the wild-type IGF1R. The impaired IGF1 signaling caused by the IGF1R mutations resulted in the reduced induction of the major IGF1-activated genes in MEFs, including EGR1, mCSF, IL3Rα, and TDAG51. Furthermore, the IGF1R mutations caused a delay in cell cycle progression after IGF1 treatment, indicating a dysfunctional physiological response to a cell proliferation signal. These results demonstrate that the human longevity-associated IGF1R variants are reduced-function mutations, implying that dampening of IGF1 signaling may be a longevity mechanism in humans.


Assuntos
Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Receptor IGF Tipo 1 , Transdução de Sinais/efeitos dos fármacos , Idoso de 80 Anos ou mais , Alelos , Animais , Proliferação de Células , Regulação para Baixo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fibroblastos/citologia , Genótipo , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Subunidade alfa de Receptor de Interleucina-3/genética , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Judeus , Longevidade , Camundongos , Camundongos Knockout , Mutação , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Aging Cell ; 8(6): 706-25, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19764929

RESUMO

Two age-1 nonsense mutants, truncating the class-I phosphatidylinositol 3-kinase catalytic subunit (PI3K(CS)) before its kinase domain, confer extraordinary longevity and stress-resistance to Caenorhabditis elegans. These traits, unique to second-generation homozygotes, are blunted at the first generation and are largely reversed by additional mutations to DAF-16/FOXO, a transcription factor downstream of AGE-1 in insulin-like signaling. The strong age-1 alleles (mg44, m333) were compared with the weaker hx546 allele on expression microarrays, testing four independent cohorts of each allele. Among 276 genes with significantly differential expression, 92% showed fewer transcripts in adults carrying strong age-1 alleles rather than hx546. This proportion is significantly greater than the slight bias observed when contrasting age-1 alleles to wild-type worms. Thus, transcriptional changes peculiar to nonsense alleles primarily involve either gene silencing or failure of transcriptional activation. A subset of genes responding preferentially to age-1-nonsense alleles was reassessed by real-time polymerase chain reaction, in worms bearing strong or weak age-1 alleles; nearly all of these were significantly more responsive to the age-1(mg44) allele than to age-1(hx546). Additional mutation of daf-16 reverted the majority of altered mg44-F2 expression levels to approximately wild-type values, although a substantial number of genes remained significantly distinct from wild-type, implying that age-1(mg44) modulates transcription through both DAF-16/FOXO-dependent and -independent channels. When age-1-inhibited genes were targeted by RNA interference (RNAi) in wild-type or age-1(hx546) adults, most conferred significant oxidative-stress protection. RNAi constructs targeting two of those genes were shown previously to extend life, and RNAi's targeting five novel genes were found here to increase lifespan. PI3K-null mutants may thus implicate novel mechanisms of life extension.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Regulação da Expressão Gênica , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Alelos , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Longevidade , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/genética , Interferência de RNA , Estresse Fisiológico , Transcrição Gênica
18.
Biochim Biophys Acta ; 1790(10): 1075-83, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19465083

RESUMO

Long-lived mutants provide unique insights into the genetic factors that limit lifespan in wild-type animals. Most mutants and RNA interference targets found to extend life, typically by 1.5- to 2.5-fold, were discovered in C. elegans. Several longevity-assurance pathways are conserved across widely divergent taxa, indicating that mechanisms of lifespan regulation evolved several hundred million years ago. Strong mutations to the C. elegans gene encoding AGE-1/PI3KCS achieve unprecedented longevity by orchestrating the modulation (predominantly silencing) of multiple signaling pathways. This is evident in a profound attenuation of total kinase activity, leading to reduced phosphoprotein content. Mutations to the gene encoding the catalytic subunit of PI3K (phosphatidylinositol 3-kinase) have the potential to modulate all enzymes that depend on its product, PIP3, for membrane tethering or activation by other kinases. Remarkably, strong mutants inactivating PI3K also silence multiple signaling pathways at the transcript level, partially but not entirely mediated by the DAF-16/FOXO transcription factor. Mammals have a relatively large proportion of somatic cells, and survival depends on their replication, whereas somatic cell divisions in nematodes are limited to development and reproductive tissues. Thus, translation of longevity gains from nematodes to mammals requires disentangling the downstream consequences of signaling mutations, to avoid their deleterious consequences.


Assuntos
Longevidade/genética , Mutação , Transdução de Sinais/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Longevidade/fisiologia , Modelos Biológicos , Fosfatidilinositol 3-Quinases/genética
19.
PLoS Genet ; 5(4): e1000452, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19360094

RESUMO

Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP(2) to form PIP(3), a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust-implying that maternally contributed trace amounts of PI3K activity or of PIP(3) block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP(3)-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO-dependent and -independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves transcriptional as well as kinase regulation in a positive-feedback circuit, favoring either survival or reproduction. Hyperlongevity of strong age-1(mg44) mutants may result from their inability to reset this molecular switch to the reproductive mode.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Regulação para Baixo , Fosfatidilinositol 3-Quinases/metabolismo , Transcrição Gênica , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Fatores de Transcrição Forkhead , Longevidade , Masculino , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA