Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(1): 93-96, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134162

RESUMO

We report on the generation of optical vortices with few-cycle pulse durations, 500µJ per pulse, at a repetition rate of 1 kHz. To do so, a 25 fs laser beam at 800 nm is shaped with a helical phase and coupled into a hollow-core fiber filled with argon gas, in which it undergoes self-phase modulation. Then, 5.5 fs long pulses are measured at the output of the fiber using a dispersion-scan setup. To retrieve the spectrally resolved spatial profile and orbital angular momentum (OAM) content of the pulse, we introduce a method based on spatially resolved Fourier-transform spectroscopy. We find that the input OAM is transferred to all frequency components of the post-compressed pulse. The combination of these two information shows that we obtain few-cycle, high-intensity vortex beams with a well-defined OAM, and sufficient energy to drive strong-field processes.

2.
Phys Rev Lett ; 131(20): 203402, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039449

RESUMO

High harmonic generation (HHG) has become a core pillar of attosecond science. Traditionally described with field-based models, HHG can also be viewed in a parametric picture, which predicts all properties of the emitted photons, but not the nonperturbative efficiency of the process. Driving HHG with two noncollinear beams and deriving analytically the corresponding yield scaling laws for any intensity ratio, we herein reconcile the two interpretations, introducing a generalized photonic description of HHG. It is in full agreement with field-based simulations and experimental data, opening the route to smart engineering of HHG with multiple driving beams.

3.
Phys Rev Lett ; 131(6): 066402, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625042

RESUMO

We performed spin-, time- and angle-resolved extreme ultraviolet photoemission spectroscopy of excitons prepared by photoexcitation of inversion-symmetric 2H-WSe_{2} with circularly polarized light. The very short probing depth of XUV photoemission permits selective measurement of photoelectrons originating from the top-most WSe_{2} layer, allowing for direct measurement of hidden spin polarization of bright and momentum-forbidden dark excitons. Our results reveal efficient chiroptical control of bright excitons' hidden spin polarization. Following optical photoexcitation, intervalley scattering between nonequivalent K-K^{'} valleys leads to a decay of bright excitons' hidden spin polarization. Conversely, the ultrafast formation of momentum-forbidden dark excitons acts as a local spin polarization reservoir, which could be used for spin injection in van der Waals heterostructures involving multilayer transition metal dichalcogenides.

4.
Sci Adv ; 8(12): eabl7594, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319974

RESUMO

Imaging in real time the complete dynamics of a process as fundamental as photoemission has long been out of reach because of the difficulty of combining attosecond temporal resolution with fine spectral and angular resolutions. Here, we achieve full decoding of the intricate angle-dependent dynamics of a photoemission process in helium, spectrally and anisotropically structured by two-photon transitions through intermediate bound states. Using spectrally and angularly resolved attosecond electron interferometry, we characterize the complex-valued transition probability amplitude toward the photoelectron quantum state. This allows reconstructing in space, time, and energy the complete formation of the photoionized wave packet.

5.
Opt Lett ; 46(20): 5264-5267, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653168

RESUMO

We report on the nonlinear temporal compression of mJ energy pulses from a Ti:Sa chirped pulse amplifier system in a multipass cell filled with argon. The pulses are compressed from 30 fs down to 5.3 fs, corresponding to two optical cycles. The post-compressed beam exhibits excellent spatial quality and homogeneity. These results provide guidelines for optimizing the compressed pulse quality and further scaling of multipass-cell-based post-compression down to the single-cycle regime.

6.
Phys Rev Lett ; 97(13): 130801, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-17026019

RESUMO

We report a frequency measurement of the 1S0-3P0 transition of 87Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2 x 10(-13), i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA