Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38637154

RESUMO

Cocaine use disorder is a significant public health issue without an effective pharmacological treatment. Successful treatments are hindered in part by an incomplete understanding of the molecular mechanisms that underlie long-lasting maladaptive plasticity and addiction-like behaviors. Here, we leverage a large RNA sequencing dataset to generate gene coexpression networks across six interconnected regions of the brain's reward circuitry from mice that underwent saline or cocaine self-administration. We identify phosphodiesterase 1b (Pde1b), a Ca2+/calmodulin-dependent enzyme that increases cAMP and cGMP hydrolysis, as a central hub gene within a nucleus accumbens (NAc) gene module that was bioinformatically associated with addiction-like behavior. Chronic cocaine exposure increases Pde1b expression in NAc D2 medium spiny neurons (MSNs) in male but not female mice. Viral-mediated Pde1b overexpression in NAc reduces cocaine self-administration in female rats but increases seeking in both sexes. In female mice, overexpressing Pde1b in D1 MSNs attenuates the locomotor response to cocaine, with the opposite effect in D2 MSNs. Overexpressing Pde1b in D1/D2 MSNs had no effect on the locomotor response to cocaine in male mice. At the electrophysiological level, Pde1b overexpression reduces sEPSC frequency in D1 MSNs and regulates the excitability of NAc MSNs. Lastly, Pde1b overexpression significantly reduced the number of differentially expressed genes (DEGs) in NAc following chronic cocaine, with discordant effects on gene transcription between sexes. Together, we identify novel gene modules across the brain's reward circuitry associated with addiction-like behavior and explore the role of Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Redes Reguladoras de Genes , Camundongos Endogâmicos C57BL , Núcleo Accumbens , Caracteres Sexuais , Animais , Masculino , Feminino , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Camundongos , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Cocaína/farmacologia , Recompensa
2.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659771

RESUMO

Major depressive disorder (MDD) is linked to impaired structural and synaptic plasticity in limbic brain regions. Astrocytes, which regulate synapses and are influenced by chronic stress, likely contribute to these changes. We analyzed astrocyte gene profiles in the nucleus accumbens (NAc) of humans with MDD and mice exposed to chronic stress. Htra1 , which encodes an astrocyte-secreted protease targeting the extracellular matrix (ECM), was significantly downregulated in the NAc of males but upregulated in females in both species. Manipulating Htra1 in mouse NAc astrocytes bidirectionally controlled stress susceptibility in a sex-specific manner. Such Htra1 manipulations also altered neuronal signaling and ECM structural integrity in NAc. These findings highlight astroglia and the brain's ECM as key mediators of sex-specific stress vulnerability, offering new approaches for MDD therapies.

3.
Biol Psychiatry ; 93(6): 502-511, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36253194

RESUMO

BACKGROUND: Over the course of chronic drug use, brain transcriptional neuroadaptation is thought to contribute to a change in drug use behavior over time. The function of the transcription factor CREB (cAMP response element binding protein) within the nucleus accumbens (NAc) has been well documented in opposing the rewarding properties of many classes of drugs, yet the gene targets through which CREB causally manifests these lasting neuroadaptations remain unknown. Here, we identify zinc finger protein 189 (Zfp189) as a CREB target gene that is transcriptionally responsive to acute and chronic cocaine use within the NAc of mice. METHODS: To investigate the role of the CREB-Zfp189 interaction in cocaine use, we virally delivered modified clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9 constructs capable of selectively localizing CREB to the Zfp189 gene promoter in the NAc of mice. RESULTS: We observed that CREB binding to the Zfp189 promoter increased Zfp189 expression and diminished the reinforcing responses to cocaine. Furthermore, we showed that NAc Zfp189 expression increased within D1 medium spiny neurons in response to acute cocaine but increased in both D1- and D2-expressing medium spiny neurons in response to chronic cocaine. CREB-mediated induction of Zfp189 potentiated electrophysiological activity of D1- and D2-expressing medium spiny neurons, recapitulating the known effect of CREB on these neurons. Finally, targeting CREB to the Zfp189 promoter within NAc Drd2-expressing neurons, but not Drd1-expressing neurons, was sufficient to diminish cocaine-conditioned behaviors. CONCLUSIONS: Together, these findings point to the CREB-Zfp189 interaction within the NAc Drd2+ neurons as a molecular signature of chronic cocaine use that is causal in counteracting the reinforcing effects of cocaine.


Assuntos
Adaptação Fisiológica , Transtornos Relacionados ao Uso de Cocaína , Cocaína , Neurônios Espinhosos Médios , Regiões Promotoras Genéticas , Fatores de Transcrição , Animais , Camundongos , Adaptação Fisiológica/genética , Cocaína/farmacologia , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/genética , Neurônios Espinhosos Médios/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleo Accumbens , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Sci Adv ; 8(18): eabq5934, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35507664

RESUMO

Targeted epigenetic remodeling in the rat amygdala reverses the effects of adolescent alcohol consumption on excessive drinking and anxiety-like behavior in adulthood.


Assuntos
Consumo de Álcool por Menores , Consumo de Bebidas Alcoólicas , Tonsila do Cerebelo , Animais , Epigênese Genética , Epigenômica , Ratos
5.
Biol Psychiatry ; 91(1): 81-91, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33896623

RESUMO

BACKGROUND: Major depressive disorder is a pervasive and debilitating syndrome characterized by mood disturbances, anhedonia, and alterations in cognition. While the prevalence of major depressive disorder is twice as high for women as men, little is known about the molecular mechanisms that drive sex differences in depression susceptibility. METHODS: We discovered that SLIT1, a secreted protein essential for axonal navigation and molecular guidance during development, is downregulated in the adult ventromedial prefrontal cortex (vmPFC) of women with depression compared with healthy control subjects, but not in men with depression. This sex-specific downregulation of Slit1 was also observed in the vmPFC of mice exposed to chronic variable stress. To identify a causal, sex-specific role for SLIT1 in depression-related behavioral abnormalities, we performed knockdown (KD) of Slit1 expression in the vmPFC of male and female mice. RESULTS: When combined with stress exposure, vmPFC Slit1 KD reflected the human condition by inducing a sex-specific increase in anxiety- and depression-related behaviors. Furthermore, we found that vmPFC Slit1 KD decreased the dendritic arborization of vmPFC pyramidal neurons and decreased the excitability of the neurons in female mice, effects not observed in males. RNA sequencing analysis of the vmPFC after Slit1 KD in female mice revealed an augmented transcriptional stress signature. CONCLUSIONS: Together, our findings establish a crucial role for SLIT1 in regulating neurophysiological and transcriptional responses to stress within the female vmPFC and provide mechanistic insight into novel signaling pathways and molecular factors influencing sex differences in depression susceptibility.


Assuntos
Transtorno Depressivo Maior , Anedonia , Animais , Ansiedade , Feminino , Masculino , Camundongos , Córtex Pré-Frontal , Caracteres Sexuais
6.
Mol Psychiatry ; 27(1): 687-709, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34079067

RESUMO

Repeated cocaine use induces coordinated changes in gene expression that drive plasticity in the nucleus accumbens (NAc), an important component of the brain's reward circuitry, and promote the development of maladaptive, addiction-like behaviors. Studies on the molecular basis of cocaine action identify transcription factors, a class of proteins that bind to specific DNA sequences and regulate transcription, as critical mediators of this cocaine-induced plasticity. Early methods to identify and study transcription factors involved in addiction pathophysiology primarily relied on quantifying the expression of candidate genes in bulk brain tissue after chronic cocaine treatment, as well as conventional overexpression and knockdown techniques. More recently, advances in next generation sequencing, bioinformatics, cell-type-specific targeting, and locus-specific neuroepigenomic editing offer a more powerful, unbiased toolbox to identify the most important transcription factors that drive drug-induced plasticity and to causally define their downstream molecular mechanisms. Here, we synthesize the literature on transcription factors mediating cocaine action in the NAc, discuss the advancements and remaining limitations of current experimental approaches, and emphasize recent work leveraging bioinformatic tools and neuroepigenomic editing to study transcription factors involved in cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Plasticidade Neuronal , Núcleo Accumbens , Fatores de Transcrição , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Humanos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nat Rev Neurosci ; 21(9): 471-484, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32704051

RESUMO

Studies over the past several decades have identified numerous epigenetic mechanisms associated with pathological states in psychiatric and neurological disease. Until recently, studies investigating chromatin-regulatory proteins, using overexpression or knockdown approaches, did not establish causal roles for epigenetic modifications at specific genes because these techniques typically affect hundreds or thousands of genomic loci. In this Review, we describe recent efforts in using locus-specific neuroepigenome editing in vivo to, for the first time, define causal relationships between a single chromatin modification at a specific gene in a defined cell population and downstream measures at the molecular, cellular, circuit and behavioural levels. We briefly introduce three epigenome-editing platforms: zinc-finger proteins, transcriptional activator-like effectors and clustered regularly interspaced short palindromic repeats (CRISPR). We then explore the development of in vivo neuroepigenome-editing tools and their applications to resolve epigenetic contributions to the pathophysiology of brain diseases. We also discuss technical considerations for in vivo neuroepigenome-editing experiments and ongoing innovations in the field, including new tools to investigate chromatin marks, manipulate chromatin topology and induce epigenetic modifications at multiple genes in the same cell. Lastly, we explore the potential clinical applications of in vivo neuroepigenome editing for treating brain pathology.


Assuntos
Encefalopatias/genética , Cromatina/genética , Epigênese Genética/genética , Epigenômica/métodos , Edição de Genes/métodos , Animais , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-32292776

RESUMO

Dysregulation of the retinoic acid (RA) signaling pathway is observed in amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Here, we investigated the therapeutic potential of retinoid activation via the RA receptor ß (RARß) in the SOD1 G93A mouse model of ALS. Our approach utilized the RARß agonist adapalene, which we previously found to be neuroprotective in vitro. Adapalene, like most retinoids, is poorly water soluble, which has thus far prevented effective drug delivery in vivo. To address this challenge, we encapsulated adapalene within nanoparticles (Adap-NPs) composed of poly(lactic acid)-poly(ethylene glycol) (PLA-PEG). Our data demonstrate that intravenous administration of Adap-NPs robustly activates retinoid signaling in the CNS. Chronic administration of Adap-NPs resulted in improved motor performance, prolonged lifespan, and neuroprotection in SOD1 G93A mice. This study highlights retinoid signaling as a valuable therapeutic approach and presents a novel nanoparticle platform for the treatment of ALS.

9.
Biol Lett ; 13(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29118239

RESUMO

We used quantitative genetics to test a controversial theory of heat stress, in which animals overheat when the demand for oxygen exceeds the supply. This theory, referred to as oxygen- and capacity-limited thermal tolerance, predicts a positive genetic correlation between hypoxia tolerance and heat tolerance. We demonstrate the first genetic correlation of this kind in a model organism, Drosophila melanogaster Genotypes more likely to fly under hypoxic stress (12% O2) were also more likely to fly under heat stress (39°C). This finding prompts new questions about mechanisms and limits of adaptation to heat stress.


Assuntos
Drosophila melanogaster/fisiologia , Oxigênio/fisiologia , Estresse Fisiológico/genética , Termotolerância/fisiologia , Anaerobiose/genética , Anaerobiose/fisiologia , Animais , Drosophila melanogaster/genética , Feminino , Voo Animal/fisiologia , Temperatura Alta , Termotolerância/genética
10.
Glob Chang Biol ; 23(3): 1075-1084, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27558698

RESUMO

Although observations suggest the potential for phenotypic plasticity to allow adaptive responses to climate change, few experiments have assessed that potential. Modeling suggests that Sceloporus tristichus lizards will need increased nest depth, shade cover, or embryonic thermal tolerance to avoid reproductive failure resulting from climate change. To test for such plasticity, we experimentally examined how maternal temperatures affect nesting behavior and embryonic thermal sensitivity. The temperature regime that females experienced while gravid did not affect nesting behavior, but warmer temperatures at the time of nesting reduced nest depth. Additionally, embryos from heat-stressed mothers displayed increased sensitivity to high-temperature exposure. Simulations suggest that critically low temperatures, rather than high temperatures, historically limit development of our study population. Thus, the plasticity needed to buffer this population has not been under selection. Plasticity will likely fail to compensate for ongoing climate change when such change results in novel stressors.


Assuntos
Mudança Climática , Lagartos/fisiologia , Comportamento de Nidação , Adaptação Fisiológica , Animais , Clima , Feminino , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA