Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159311

RESUMO

The Advancing Climate Justice in Climate Adaptation Strategies for New York City (Equity) chapter of NPCC4 builds on the findings and recommendations from NPCC3 to identify additional metrics and adaptation efforts that can advance climate justice. First, the chapter assesses the efforts of the City to incorporate equity into climate adaptation efforts since NPCC3 and describes how the communities profiled in NPCC3 have implemented and evolved their approaches to addressing the intersecting climate, environmental, and social stressors that they continue to face. Second, it adds to the historical context of climate inequity by linking the bioregion's history of colonization, land dispossession, and slavery building on emerging evidence demonstrating how historical and contemporary land use patterns and decisions shape present and future climate risks and social vulnerability, including climate displacement. Third, it recommends a NYC-focused metric to identify areas of the city that are most vulnerable to the intersection of climate hazards, social vulnerability, and displacement. Finally, it highlights approaches to more equitable and just climate adaptation drawn from local, national, and international examples. As such, the chapter offers best practices that prioritize community-driven climate resilience approaches that are integrated, more equitable, and racially just.

2.
Nat Commun ; 14(1): 3759, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353537

RESUMO

The exceptional atmospheric conditions that have accelerated Greenland Ice Sheet mass loss in recent decades have been repeatedly recognized as a possible dynamical response to Arctic amplification. Here, we present evidence of two potentially synergistic mechanisms linking high-latitude warming to the observed increase in Greenland blocking. Consistent with a prominent hypothesis associating Arctic amplification and persistent weather extremes, we show that the summer atmospheric circulation over the North Atlantic has become wavier and link this wavier flow to more prevalent Greenland blocking. While a concomitant decline in terrestrial snow cover has likely contributed to this mechanism by further amplifying warming at high latitudes, we also show that there is a direct stationary Rossby wave response to low spring North American snow cover that enforces an anomalous anticyclone over Greenland, thus helping to anchor the ridge over Greenland in this wavier atmospheric state.


Assuntos
Camada de Gelo , Neve , Groenlândia , Regiões Árticas , Estações do Ano
3.
Nature ; 610(7933): 643-651, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36289386

RESUMO

The risks of climate change are enormous, threatening the lives and livelihoods of millions to billions of people. The economic consequences of many of the complex risks associated with climate change cannot, however, currently be quantified. Here we argue that these unquantified, poorly understood and often deeply uncertain risks can and should be included in economic evaluations and decision-making processes. We present an overview of these unquantified risks and an ontology of them founded on the reasons behind their lack of robust evaluation. These consist of risks missing owing to delays in sharing knowledge and expertise across disciplines, spatial and temporal variations of climate impacts, feedbacks and interactions between risks, deep uncertainty in our knowledge, and currently unidentified risks. We highlight collaboration needs within and between the natural and social science communities to address these gaps. We also provide an approach for integrating assessments or speculations of these risks in a way that accounts for interdependencies, avoids double counting and makes assumptions clear. Multiple paths exist for engaging with these missing risks, with both model-based quantification and non-model-based qualitative assessments playing crucial roles. A wide range of climate impacts are understudied or challenging to quantify, and are missing from current evaluations of the climate risks to lives and livelihoods. Strong interdisciplinary collaboration and deeper engagement with uncertainty is needed to properly inform policymakers and the public about climate risks.


Assuntos
Mudança Climática , Modelos Climáticos , Modelos Econômicos , Medição de Risco , Humanos , Mudança Climática/economia , Mudança Climática/estatística & dados numéricos , Incerteza , Ciências Sociais , Disciplinas das Ciências Naturais , Formulação de Políticas
4.
Nat Geosci ; 14: 899-905, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917170

RESUMO

As the global climate warms, increased surface meltwater production on ice shelves may trigger ice-shelf collapse and enhance global sea-level rise. The formation of surface rivers could help prevent ice-shelf collapse if they can efficiently evacuate meltwater. Here, we present observations of the evolution of a surface river into an ice-shelf estuary atop the Petermann Ice Shelf in northwest Greenland, and identify a second estuary at the nearby Ryder Ice Shelf. This surface hydrology process can foster fracturing and enhance calving. At the Petermann estuary, sea ice was observed converging at the river mouth upstream, indicating a flow reversal. Seawater persists in the estuary, after the surrounding icescape is frozen. Along the base of Petermann estuary, linear fractures were initiated at the calving front and propagated upstream along the channel. Similar fractures along estuary channels shaped past large rectilinear calving events at the Petermann and Ryder Ice Shelves. Increased surface melting in a warming world will enhance fluvial incision, promoting estuary development, longitudinal fracturing orthogonal to ice-shelf fronts, and increase rectilinear calving. Estuaries could develop in Antarctica within the next half-century, resulting in increased calving and accelerating both ice loss and global sea-level rise.

5.
Proc Natl Acad Sci U S A ; 114(50): E10622-E10631, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29208716

RESUMO

Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.

6.
Nature ; 544(7650): 344-348, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28426005

RESUMO

Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

7.
Proc Natl Acad Sci U S A ; 112(4): 1001-6, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583477

RESUMO

Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km(2) of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54-2.81 cm⋅d(-1)) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41-98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056-0.112 km(3)⋅d(-1) vs. ∼0.103 km(3)⋅d(-1)), and when integrated over the melt season, totaled just 37-75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA