Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Energy Lett ; 9(6): 2492-2499, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38911534

RESUMO

Silicon's potential as a lithium-ion battery (LIB) anode is hindered by the reactivity of the lithium silicide (Li x Si) interface. This study introduces an innovative approach by alloying silicon with boron, creating boron/silicon (BSi) nanoparticles synthesized via plasma-enhanced chemical vapor deposition. These nanoparticles exhibit altered electronic structures as evidenced by optical, structural, and chemical analysis. Integrated into LIB anodes, BSi demonstrates outstanding cycle stability, surpassing 1000 lithiation and delithiation cycles with minimal capacity fade or impedance growth. Detailed electrochemical and microscopic characterization reveal very little SEI growth through 1000 cycles, which suggests that electrolyte degradation is virtually nonexistent. This unconventional strategy offers a promising avenue for high-performance LIB anodes with the potential for rapid scale-up, marking a significant advancement in silicon anode technology.

2.
ACS Appl Mater Interfaces ; 16(15): 19780-19791, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584348

RESUMO

Operando electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (EC ATR-SEIRAS) is a valuable method for a fundamental understanding of electrochemical interfaces under real operating conditions. The applicability of this method depends on the ability to tune the optical and catalytic properties of an electrode film, and it thus requires unique optimization for any given material. Motivated by the growing interest in Sn-based electrocatalysts for selective reduction of CO2 to formate species, we investigate several Sn thin-film synthesis routes for the resulting SEIRA signal response. We compare the SEIRA performance of thermally evaporated metallic Sn to a series of Sn-based films on top of a SEIRA-active Au substrate (metallic Sn, oxide-derived metallic Sn, and metal oxide SnOx). Using alkanethiol self-assembled monolayers as a probe, we find that electrodepositing metallic catalyst films on top of SEIRA-active Au substrates yield higher signal relative to thermal evaporation as well as higher signal than the independent SEIRA-active Au underlayer. These observations come despite the fact that thermally evaporated Sn has a significantly higher surface roughness (and thus higher adsorbate population), suggesting specific SEIRA-magnifying effects for the stacked films. Finally, we applied these films to observe the electrochemical conversion of CO2. Differences are observed in spectral features based on the composition of the electrode being either metallic or oxide-derived metallic Sn, implying differences in their respective reaction pathways.

3.
ACS Appl Mater Interfaces ; 14(35): 39976-39984, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36000715

RESUMO

Solar cells are essentially minority carrier devices, and it is therefore of central importance to understand the pertinent carrier transport processes. Here, we advanced a transport imaging technique to directly visualize the charge motion and collection in the direction of relevant carrier transport and to understand the cell operation and degradation in state-of-the-art cadmium telluride solar cells. We revealed complex carrier transport profiles in the inhomogeneous polycrystalline thin-film solar cell, with the influence of electric junction, interface, recombination, and material composition. The pristine cell showed a unique dual peak in the carrier transport light intensity decay profile, and the dual peak feature disappeared on a degraded cell after light and heat stressing in the lab. The experiments, together with device modeling, suggested that selenium diffusion plays an important role in carrier transport. The work opens a new forum by which to understand the carrier transport and bridge the gap between atomic/nanometer-scale chemical/structural and submicrometer optoelectronic knowledge.

4.
Science ; 375(6576): 71-76, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34822309

RESUMO

The performance of three-dimensional (3D) organic-inorganic halide perovskite solar cells (PSCs) can be enhanced through surface treatment with 2D layered perovskites that have efficient charge transport. We maximized hole transport across the layers of a metastable Dion-Jacobson (DJ) 2D perovskite that tuned the orientational arrangements of asymmetric bulky organic molecules. The reduced energy barrier for hole transport increased out-of-plane transport rates by a factor of 4 to 5, and the power conversion efficiency (PCE) for the 2D PSC was 4.9%. With the metastable DJ 2D surface layer, the PCE of three common 3D PSCs was enhanced by approximately 12 to 16% and could reach approximately 24.7%. For a triple-cation­mixed-halide PSC, 90% of the initial PCE was retained after 1000 hours of 1-sun operation at ~40°C in nitrogen.

5.
ACS Appl Mater Interfaces ; 12(44): 49563-49573, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33094999

RESUMO

A trace amount of water in an electrolyte is one of the factors detrimental to the electrochemical performance of silicon (Si)-based lithium-ion batteries that adversely affect the formation and evolution of the solid electrolyte interphase (SEI) on Si-based anodes and change its properties. Thus far, a lack of fundamental and mechanistic understanding of SEI formation, evolution, and properties in the presence of water has inhibited efforts to stabilize the SEI for improved electrochemical performance. Thus, we investigated the SEI formed in a Gen2 electrolyte (1.2 M LiPF6 in ethylene carbonate/ethyl methyl carbonate, 3:7 wt %, water content: <10 ppm) with and without additional water (50 ppm) at varying potentials (1.0, 0.5, 0.2, and 0.01 V vs Li/Li+). The impact of additional water on the morphological, (electro)chemical, and structural properties of SEI was studied using microscopic (atomic force microscopy and scanning spreading resistance microscopy) and spectroscopic (X-ray photoelectron spectroscopy, attenuated total reflection Fourier-transform infrared spectroscopy, and time-of-flight secondary ion mass spectrometry) techniques. The SEI exhibits both potential- and water concentration-dependent trends in its morphology and chemical composition. The presence of additional water in the electrolyte causes parasitic reactions, which onset at ∼1.0 V, resulting in a reduction of electrolyte components and result in the formation of an insulating, fluorophosphate-rich SEI. In addition, hydrolysis of LiPF6 creates hydrofluoric acid, which reacts with the surface oxide layer on the Si electrode, leading to a pitted and inhomogeneous SEI structure.

6.
ChemSusChem ; 13(22): 5972-5982, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32985100

RESUMO

Layered P2-type Na0.8 Mn0.5 Fe0.5 O2 cathode material is a promising candidate for next-generation sodium-ion batteries due to the economical and environmentally benign characteristics of Mn and Fe. The poor cycling stability of the material, however, is still a problem that must be solved. To address the problem, electrochemically inactive Mg2+ was introduced into the structure by substituting some of the Fe ions. It was shown that Mg substitution led to a smoother voltage profile with improved cycling performance and rate capability. These observations were attributed to the suppressed structural changes during electrochemical processes. Detailed redox mechanisms, associated local structural changes, and phase transitions were investigated by X-ray absorption spectroscopy and X-ray diffraction. From the detailed analysis of electrochemical behaviors, it was also identified how the redox reactions and structural disordering occurred in the high- and low-voltage regions and how Mg substitution stabilized the structure.

7.
ACS Appl Mater Interfaces ; 12(22): 24992-24999, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32368893

RESUMO

Solid-state lithium-ion batteries are a hopeful successor to traditional Li-ion cells that use liquid electrolytes. While a growing body of work has characterized the interfaces between various solid electrolytes and the lithium metal, interfaces with common cathode intercalation compounds are comparatively less understood. In this contribution, the influence of polarization and temperature on interfacial stability between LiMn2O4 (LMO) and Li7La3Zr2O12 (LLZO) are investigated. Sputtered thin-film LMO electrodes are utilized to permit high-capacity cycling while retaining a large ratio of interfacial area to electrode bulk. Electrochemical impedance spectroscopy (EIS) is compared across a set of full (LMO|LLZO|Li) and symmetric (LMO|LLZO|LMO, Li|LLZO|Li, and Au|LLZO|Au) cells to delineate impedance features that are specific to the evolution of the cathode interface. Additional X-ray photoelectron spectroscopy (XPS) provides evidence of a limited interfacial reaction between LMO and LLZO that coincides with an increase in the impedance of the LMO-LLZO interface.

8.
ACS Appl Mater Interfaces ; 12(24): 27017-27028, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32407075

RESUMO

Silicon is a promising anode material for lithium-ion batteries because of its high capacity, but its widespread adoption has been hampered by a low cycle life arising from mechanical failure and the absence of a stable solid-electrolyte interphase (SEI). Understanding SEI formation and its impact on cycle life is made more complex by the oxidation of silicon materials in air or during synthesis, which leads to SiOx coatings of varying thicknesses that form the true surface of the electrode. In this paper, the lithiation of SiO2-coated Si is studied in a controlled manner using SiO2 coatings of different thicknesses grown on Si wafers via thermal oxidation. SiO2 thickness has a profound effect on lithiation: below 2 nm, SEI formation followed by uniform lithiation occurs at positive voltages versus Li/Li+. Si lithiation is reversible, and SiO2 lithiation is largely irreversible. Above 2 nm SiO2, voltammetric currents decrease exponentially with SiO2 thickness. For 2-3 nm SiO2, SEI formation above 0.1 V is suppressed, but a hold at low or negative voltages can initiate charge transfer whereupon SEI formation and uniform lithiation occur. Cycling of Si anodes with an SiO2 coating thinner than 3 nm occurs at high Coulombic efficiency (CE). If an SiO2 coating is thicker than 3-4 nm, the behavior is totally different: lithiation at positive voltages is strongly inhibited, and lithiation occurs at poor CE and is highly localized at pinholes which grow over time. As they grow, lithiation becomes more facile and the CE increases. Pinhole growth is proposed to occur via rapid transport of Li along the SiO2/Si interface radially outward from an existing pinhole, followed by the lithiation of SiO2 from the interface outward.

9.
ACS Appl Mater Interfaces ; 12(23): 26593-26600, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412232

RESUMO

A stable solid electrolyte interphase (SEI) has been proven to be a key enabler to most advanced battery chemistries, where the reactivity between the electrolyte and the anode operating beyond the electrolyte stability limits must be kinetically suppressed by such SEIs. The graphite anode used in state-of-the-art Li-ion batteries presents the most representative SEI example. Because of similar operation potentials between graphite and silicon (Si), a similar passivation mechanism has been thought to apply on the Si anode when using the same carbonate-based electrolytes. In this work, we found that the chemical formation process of a proto-SEI on Si is closely entangled with incessant SEI decomposition, detachment, and reparation, which lead to continuous lithium consumption. Using a special galvanostatic protocol designed to observe the SEI formation prior to Si lithiation, we were able to deconvolute the electrochemical formation of such dynamic SEI from the morphology and mechanical complexities of Si and showed that a pristine Si anode could not be fully passivated in carbonate-based electrolytes.

10.
ACS Appl Mater Interfaces ; 11(50): 46993-47002, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31738043

RESUMO

Because of the complexity, high reactivity, and continuous evolution of the silicon-electrolyte interphase (SiEI), "individual" constituents of the SiEI were investigated to understand their physical, electrochemical, and mechanical properties. For the analysis of these intrinsic properties, known SiEI components (i.e., SiO2, Li2Si2O5, Li2SiO3, Li3SiOx, Li2O, and LiF) were selected and prepared as amorphous thin films. The chemical composition, purity, morphology, roughness, and thickness of prepared samples were characterized using a variety of analytical techniques. On the basis of subsequent analysis, LiF shows the lowest ionic conductivity and relatively weak, brittle mechanical properties, while lithium silicates demonstrate higher ionic conductivities and greater mechanical hardness. This research establishes a framework for identifying components critical for stabilization of the SiEI, thus enabling rational design of new electrolyte additives and functional binders for the development of next-generation advanced Li-ion batteries utilizing Si anodes.

11.
Nat Commun ; 10(1): 2842, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253800

RESUMO

Metal halide perovskite semiconductors possess outstanding characteristics for optoelectronic applications including but not limited to photovoltaics. Low-dimensional and nanostructured motifs impart added functionality which can be exploited further. Moreover, wider cation composition tunability and tunable surface ligand properties of colloidal quantum dot (QD) perovskites now enable unprecedented device architectures which differ from thin-film perovskites fabricated from solvated molecular precursors. Here, using layer-by-layer deposition of perovskite QDs, we demonstrate solar cells with abrupt compositional changes throughout the perovskite film. We utilize this ability to abruptly control composition to create an internal heterojunction that facilitates charge separation at the internal interface leading to improved photocarrier harvesting. We show how the photovoltaic performance depends upon the heterojunction position, as well as the composition of each component, and we describe an architecture that greatly improves the performance of perovskite QD photovoltaics.

12.
Science ; 364(6439): 475-479, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31000592

RESUMO

All-perovskite-based polycrystalline thin-film tandem solar cells have the potential to deliver efficiencies of >30%. However, the performance of all-perovskite-based tandem devices has been limited by the lack of high-efficiency, low-band gap tin-lead (Sn-Pb) mixed-perovskite solar cells (PSCs). We found that the addition of guanidinium thiocyanate (GuaSCN) resulted in marked improvements in the structural and optoelectronic properties of Sn-Pb mixed, low-band gap (~1.25 electron volt) perovskite films. The films have defect densities that are lower by a factor of 10, leading to carrier lifetimes of greater than 1 microsecond and diffusion lengths of 2.5 micrometers. These improved properties enable our demonstration of >20% efficient low-band gap PSCs. When combined with wider-band gap PSCs, we achieve 25% efficient four-terminal and 23.1% efficient two-terminal all-perovskite-based polycrystalline thin-film tandem solar cells.

13.
ACS Appl Mater Interfaces ; 10(44): 38558-38564, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30362716

RESUMO

Silicon (Si) is a commonly studied candidate material for next-generation anodes in Li-ion batteries. A native oxide SiO2 on Si is often inevitable. However, it is not clear if this layer has a positive or negative effect on the battery performance. This understanding is complicated by the lack of knowledge about the physical properties of the SiO2 lithiation products and by the convolution of chemical and electrochemical effects during the anode lithiation process. In this study, Li xSiO y thin films as model materials for lithiated SiO2 were deposited by magnetron sputtering at ambient temperature, with the goal of (1) decoupling chemical reactivity from electrochemical reactivity and (2) evaluating the physical and electrochemical properties of Li xSiO y. X-ray photoemission spectroscopy analysis of the deposited thin films demonstrate that a composition close to previous experimental reports of lithiated native SiO2 can be achieved through sputtering. Our density functional theory calculations also confirm that the possible phases formed by lithiating SiO2 are very close to the measured film compositions. Scanning probe microscopy measurements show that the mechanical properties of the film are strongly dependent on lithium concentration, with a ductile behavior at a higher Li content and a brittle behavior at a lower Li content. The chemical reactivity of the thin films was investigated by measuring the AC impedance evolution, suggesting that Li xSiO y continuously reacts with the electrolyte, in part because of the high electronic conductivity of the film determined from solid-state impedance measurements. The electrochemical cycling data of the sputter-deposited Li xSiO y/Si films also suggest that Li xSiO y is not beneficial in stabilizing the Si anode surface during battery operation, despite its favorable mechanical properties.

14.
ACS Appl Mater Interfaces ; 10(44): 38558-38564, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360108

RESUMO

Silicon (Si) is a commonly studied candidate material for next-generation anodes in Li-ion batteries. A native oxide SiO2 on Si is often inevitable. However, it is not clear if this layer has positive or negative effect on the battery performance. This understanding is complicated by the lack of knowledge about the physical properties, and by convolution of chemical and electrochemical effects during the anode lithiation process. In this study, LixSiOy thin films as model materials for lithiated SiO2 were deposited by magnetron sputtering at ambient temperature, with the goal of 1) decoupling chemical reactivity from electrochemical reactivity, and 2) evaluating the physical and electrochemical properties of LixSiOy. XPS analysis of the deposited thin films demonstrate that a composition close to previous experimental reports of lithiated native SiO2, can be achieved through sputtering. Our density functional theory calculations also confirm that possible phases formed by lithiating SiO2 are very close to the measured film compositions. Scanning probe microscopy measurements show the mechanical properties of the film are strongly dependent on lithium concentration, with ductile behavior and higher Li content and brittle behavior at lower Li content. Chemical reactivity of the thin films was investigated by measuring AC impedance evolution, suggesting that LixSiOy continuously reacts with electrolyte, in part due to high electronic conductivity of the film determined from solid state impedance measurements. Electrochemical cycling data of sputter deposited LixSiOy/Si films also suggest that LixSiOy is not beneficial in stabilizing the Si anode surface during battery operation, despite its favorable mechanical properties.

15.
Nano Lett ; 18(10): 6530-6537, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216079

RESUMO

Photoelectrochemical water splitting is a clean and environmentally friendly method for solar hydrogen generation. Its practical application, however, has been limited by the poor stability of semiconductor photoelectrodes. In this work, we demonstrate the use of GaN nanostructures as a multifunctional protection layer for an otherwise unstable, low-performance photocathode. The direct integration of GaN nanostructures on n+-p Si wafer not only protects Si surface from corrosion but also significantly reduces the charge carrier transfer resistance at the semiconductor/liquid junction, leading to long-term stability (>100 h) at a large current density (>35 mA/cm2) under 1 sun illumination. The measured applied bias photon-to-current efficiency of 10.5% is among the highest values ever reported for a Si photocathode. Given that both Si and GaN are already widely produced in industry, our studies offer a viable path for achieving high-efficiency and highly stable semiconductor photoelectrodes for solar water splitting with proven manufacturability and scalability.

16.
Nat Commun ; 9(1): 2490, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950672

RESUMO

Solid-state electrolytes such as Li2S-P2S5 compounds are promising materials that could enable Li metal anodes. However, many solid-state electrolytes are unstable against metallic lithium, and little is known about the chemical evolution of these interfaces during cycling, hindering the rational design of these materials. In this work, operando X-ray photoelectron spectroscopy and real-time in situ Auger electron spectroscopy mapping are developed to probe the formation and evolution of the Li/Li2S-P2S5 solid-electrolyte interphase during electrochemical cycling, and to measure individual overpotentials associated with specific interphase constituents. Results for the Li/Li2S-P2S5 system reveal that electrochemically driving Li+ to the surface leads to phase decomposition into Li2S and Li3P. Additionally, oxygen contamination within the Li2S-P2S5 leads initially to Li3PO4 phase segregation, and subsequently to Li2O formation. The spatially non-uniform distribution of these phases, coupled with differences in their ionic conductivities, have important implications for the overall properties and performance of the solid-electrolyte interphase.

17.
J Am Chem Soc ; 140(12): 4293-4301, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29494134

RESUMO

We report on the theoretical prediction and experimental realization of new ternary zinc molybdenum nitride compounds. We used theory to identify previously unknown ternary compounds in the Zn-Mo-N systems, Zn3MoN4 and ZnMoN2, and to analyze their bonding environment. Experiments show that Zn-Mo-N alloys can form in broad composition range from Zn3MoN4 to ZnMoN2 in the wurtzite-derived structure, accommodating very large off-stoichiometry. Interestingly, the measured wurtzite-derived structure of the alloys is metastable for the ZnMoN2 stoichiometry, in contrast to the Zn3MoN4 stoichiometry, where ordered wurtzite is predicted to be the ground state. The formation of Zn3MoN4-ZnMoN2 alloy with wurtzite-derived crystal structure is enabled by the concomitant ability of Mo to change oxidation state from +VI in Zn3MoN4 to +IV in ZnMoN2, and the capability of Zn to contribute to the bonding states of both compounds, an effect that we define as "redox-mediated stabilization". The stabilization of Mo in both the +VI and +IV oxidation states is due to the intermediate electronegativity of Zn, which enables significant polar covalent bonding in both Zn3MoN4 and ZnMoN2 compounds. The smooth change in the Mo oxidation state between Zn3MoN4 and ZnMoN2 stoichiometries leads to a continuous change in optoelectronic properties-from resistive and semitransparent Zn3MoN4 to conductive and absorptive ZnMoN2. The reported redox-mediated stabilization in zinc molybdenum nitrides suggests there might be many undiscovered ternary compounds with one metal having an intermediate electronegativity, enabling significant covalent bonding, and another metal capable of accommodating multiple oxidation states, enabling stoichiometric flexibility.

18.
Phys Chem Chem Phys ; 17(23): 15355-64, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000570

RESUMO

A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV).

19.
Opt Express ; 20 Suppl 2: A327-32, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418682

RESUMO

A polycrystalline Cu2ZnSnS4 thin film was deposited on fused quartz by co-evaporation. The selected thickness was ~100 nm to avoid artifacts in its optical properties caused by thicker as-grown films. The composition and phase of the film were checked with x-ray fluorescence, Raman shift spectroscopy, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. An improved spectroscopic ellipsometry methodology with two-side measurement geometries was applied to extract the complex dielectric function ε = ε1 + iε2 of the Cu2ZnSnS4 thin film between 0.73 and 6.5 eV. Five critical points were observed, at 1.32 (fundamental band gap), 2.92, 3.92, 4.96, and 5.62 eV, respectively. The ε spectra are in reasonable agreement with those from theoretical calculations.

20.
ACS Nano ; 5(5): 3714-23, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21388221

RESUMO

In this report, we investigate the electrical and optical properties of thin conducting films of SWNTs after treatment with small molecule and polymeric amines. Among those tested, we find hydrazine to be the most effective n-type dopant. We use absorbance, Raman, X-ray photoelectron, and nuclear magnetic resonance spectroscopies on thin conducting films and opaque buckypapers treated with hydrazine to study fundamental properties and spectroscopic signatures of n-type SWNTs and compare them to SWNTs treated with nitric acid, a well-characterized p-type dopant. We find that hydrazine physisorbs to the surface of semiconducting and metallic SWNTs and injects large electron concentrations, raising the Fermi level as much as 0.7 eV above that of intrinsic SWNTs. Hydrazine-treated transparent SWNT films display sheet resistances nearly as low as p-type nitric-acid-treated films at similar optical transmittances, demonstrating their potential for use in photovoltaic devices as low work function transparent electron-collecting electrodes.


Assuntos
Aminas/química , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA