Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 15(1): 85-96, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19050060

RESUMO

The essential transcriptional repressor REST (repressor element 1-silencing transcription factor) plays central roles in development and human disease by regulating a large cohort of neural genes. These have conventionally fallen into the class of known, protein-coding genes; recently, however, several noncoding microRNA genes were identified as REST targets. Given the widespread transcription of messenger RNA-like, noncoding RNAs ("macroRNAs"), some of which are functional and implicated in disease in mammalian genomes, we sought to determine whether this class of noncoding RNAs can also be regulated by REST. By applying a new, unbiased target gene annotation pipeline to computationally discovered REST binding sites, we find that 23% of mammalian REST genomic binding sites are within 10 kb of a macroRNA gene. These putative target genes were overlooked by previous studies. Focusing on a set of 18 candidate macroRNA targets from mouse, we experimentally demonstrate that two are regulated by REST in neural stem cells. Flanking protein-coding genes are, at most, weakly repressed, suggesting specific targeting of the macroRNAs by REST. Similar to the majority of known REST target genes, both of these macroRNAs are induced during nervous system development and have neurally restricted expression profiles in adult mouse. We observe a similar phenomenon in human: the DiGeorge syndrome-associated noncoding RNA, DGCR5, is repressed by REST through a proximal upstream binding site. Therefore neural macroRNAs represent an additional component of the REST regulatory network. These macroRNAs are new candidates for understanding the role of REST in neuronal development, neurodegeneration, and cancer.


Assuntos
Neurônios/metabolismo , RNA não Traduzido/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Células Cultivadas , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Células HeLa , Humanos , Camundongos , Proteínas Repressoras/genética , Células-Tronco/metabolismo
2.
PLoS Biol ; 6(10): e256, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18959480

RESUMO

The maintenance of pluripotency and specification of cellular lineages during embryonic development are controlled by transcriptional regulatory networks, which coordinate specific sets of genes through both activation and repression. The transcriptional repressor RE1-silencing transcription factor (REST) plays important but distinct regulatory roles in embryonic (ESC) and neural (NSC) stem cells. We investigated how these distinct biological roles are effected at a genomic level. We present integrated, comparative genome- and transcriptome-wide analyses of transcriptional networks governed by REST in mouse ESC and NSC. The REST recruitment profile has dual components: a developmentally independent core that is common to ESC, NSC, and differentiated cells; and a large, ESC-specific set of target genes. In ESC, the REST regulatory network is highly integrated into that of pluripotency factors Oct4-Sox2-Nanog. We propose that an extensive, pluripotency-specific recruitment profile lends REST a key role in the maintenance of the ESC phenotype.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Neurônios/metabolismo , Proteínas Repressoras/fisiologia , Células-Tronco/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células NIH 3T3 , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco/citologia
3.
Stem Cells ; 26(11): 2791-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18757296

RESUMO

Oct4, Sox2, and Nanog are key components of a core transcriptional regulatory network that controls the ability of embryonic stem cells to differentiate into all cell types. Here we show that Zfp281, a zinc finger transcription factor, is a key component of the network and that it is required to maintain pluripotency. Zfp281 was shown to directly activate Nanog expression by binding to a site in the promoter in very close proximity to the Oct4 and Sox2 binding sites. We present data showing that Zfp281 physically interacts with Oct4, Sox2, and Nanog. Chromatin immunoprecipitation experiments identified 2,417 genes that are direct targets for regulation by Zfp281, including several transcription factors that are known regulators of pluripotency, such as Oct4, Sox2, and Nanog. Gene expression microarray analysis indicated that some Zfp281 target genes were activated, whereas others were repressed, upon knockdown of Zfp281. The identification of both activation and repression domains within Zfp281 suggests that this transcription factor plays bifunctional roles in regulating gene expression within the network. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/fisiologia , Dedos de Zinco/fisiologia , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição SOXB1/metabolismo
4.
Stem Cells ; 25(9): 2173-82, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17628018

RESUMO

Zfp206 (ZNF206 in human) encodes a zinc finger- and SCAN domain-containing protein that is highly expressed in pluripotent ESC. Upon differentiation of human and mouse ESC, Zfp206 expression is quickly repressed. Zfp206 was found to be expressed throughout embryogenesis but absent in adult tissues except testis. We have identified a role for Zfp206 in controlling ESC differentiation. ESC engineered to overexpress Zfp206 were found to be resistant to differentiation induced by retinoic acid. In addition, ESC with knocked-down expression of Zfp206 were more sensitive to differentiation by retinoic acid treatment. We found that Zfp206 was able to enhance expression from its own promoter and also activate transcription of the Oct4 and Nanog promoters. Our results show that Zfp206 is an embryonic transcription factor that plays a role in regulating pluripotency of embryonic stem cells.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Modelos Biológicos , Estrutura Terciária de Proteína/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
5.
J Biol Chem ; 282(17): 12822-30, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17344211

RESUMO

It is well known that Oct4 and Sox2 play an important role in the maintenance of embryonic stem cell pluripotency. These transcription factors bind to regulatory regions within hundreds of target genes to control their expression. Zfp206 is a recently characterized transcription factor that has a role in maintaining stem cell pluripotency. We have demonstrated here that Zfp206 is a direct downstream target of Oct4 and Sox2. Two composite sox-oct binding sites have been identified within the first intron of Zfp206. We have demonstrated binding of Oct4 and Sox2 to this region. In addition, we have shown that Oct4 or Sox2 alone can activate transcription via one of these sox-oct elements, although the presence of both Oct4 and Sox2 gave rise to a synergistic effect. These studies extend our understanding of the transcriptional network that operates to regulate the differentiation potential of embryonic stem cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/biossíntese , Animais , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Ligação Proteica/fisiologia , Elementos de Resposta/fisiologia , Fatores de Transcrição SOXB1 , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA