Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chemosphere ; 324: 138278, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36878364

RESUMO

The excessive use of pesticides and the demand for environmentally friendly compounds have driven the focus to detailed studies of the environmental destination of these compounds. Degradation by hydrolysis of pesticides, when released into the soil, can result in the formation of metabolites with potentially adverse effects on the environment. Moving in this direction, we investigated the mechanism of acid hydrolysis of the herbicide ametryn (AMT) and predicted the toxicities of metabolites through experimental and theoretical approaches. The formation of ionized hydroxyatrazine (HA) occurs with the release of the SCH3- group and the addition of H3O+ to the triazine ring. The tautomerization reactions privileged the conversion of AMT into HA. Furthermore, the ionized HA is stabilized by an intramolecular reaction that provides the molecule in two tautomeric states. Experimentally, the hydrolysis of AMT was obtained under acidic conditions and at room temperature with HA as the main product. HA was isolated in a solid state through its crystallization as organic counterions. The mechanism of conversion of AMT to HA and the experimental investigation of the reaction kinetics allowed us to determine the dissociation of CH3SH as the rate-controlling step in the degradation process that culminates in a half-life between 7 and 24 months under typical acid soil conditions of the Brazilian Midwest - region with strong agricultural and livestock vocation. The keto and hydroxy metabolites showed substantial thermodynamic stability and a decrease in toxicity compared to AMT. We hope that this comprehensive study will support the understanding of the degradation of s-triazine-based pesticides.


Assuntos
Herbicidas , Triazinas , Hidrólise , Estrutura Molecular , Cinética , Triazinas/química , Herbicidas/toxicidade , Solo
2.
J Hazard Mater ; 443(Pt B): 130224, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36345058

RESUMO

In this work, periodic mesoporous organosilicas (PMO) functionalized with the organic sentisizer naphthalenediimide (NDI) were employed as heterogeneous catalysts for the photodegradation of the antibiotic sulfadiazine (SDZ), taken as a model for contaminants of emerging concern (CECs). The catalysts, designated as PMONDI, were prepared by surfactant-directed co-condensation of the precursor N,N'-bis(3-triethoxysilylpropyl)- 1,4,5,8-naphthalenediimide with tetraethoxysilane. The synthesized PMONDI were characterized using transmission electron microscopy, nitrogen adsorption isotherms and small and large angle x-ray scattering. The performance of PMONDI catalysts in the photodegradation of SDZ was compared to that of TiO2 nanoparticles impregnated into SBA-15 mesoporous silica (TiO2/SBA-15), under irradiation with a Hg lamp with a bandpass filter of 320-500 nm. Under optimal conditions, PMONDI degraded 100% of the SDZ in 45 min, while the total degradation of SDZ was achieved only after 150 min with TiO2/SBA-15. PMONDI also performed better than TiO2/SBA-15 in reuse tests. The mechanism of photodegradation with PMONDI involves the formation of excited triplet states of NDI (3NDI*) upon irradiation, which can then react with molecular oxygen to form reactive oxygen species, which degrade SDZ. Analysis of the SDZ degradation products indicated two main pathways: (1) hydroxylation of the aniline ring and (2) SO2 extrusion and rearrangement, followed by oxidation of the aniline ring to nitrobenzene. In conclusion, the great potential of the PMONDI materials as photocatalysts for CECs degradation was demonstrated in this work, encouraging further research on these materials for the degradation of pollutants.


Assuntos
Sulfadiazina , Sulfadiazina/metabolismo , Fotólise
3.
Chemosphere ; 287(Pt 1): 132023, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34461335

RESUMO

The photocatalytic activity of TiO2 nanoparticles (NPs) supported on mesoporous silica SBA-15 (TiO2/SBA-15) was evaluated for the photodegradation of sulfadiazine (SDZ), as target contaminant of emerging concern (CEC), using either pure water solutions (PW) or a real secondary urban wastewater (UWW) spiked with SDZ. For this purpose, TiO2/SBA-15 samples with 10, 20 and 30% TiO2 (w/w) were prepared by the sol-gel post synthetic method on pre-formed SBA-15, using titanium (IV) isopropoxide as a precursor. The TiO2/SBA-15 materials were characterized by HRTEM, SAXS and XRD, nitrogen adsorption isotherms and UV-vis diffuse reflectance spectroscopy. TiO2 NPs were shown to be attached onto the external surface, decorating the SBA-15 particles. The TiO2/SBA-15 catalysts were active in SDZ photodegradation using the annular FluHelik photoreactor, when irradiated with UVA light. The 30% TiO2/SBA-15 sample presented the best performance in optimization tests performed using PW, and it was further used for the tests with UWW. The photocatalytic activity of 30% TiO2/SBA-15 was higher (56% SDZ degradation) than that of standard TiO2-P25 (32% SDZ degradation) in the removal of SDZ spiked in the UWW ([SDZ] = 2 mg L-1). The photodegradation of SDZ with 30% TiO2/SBA-15 eached 90% for UWW spiked with a lower SDZ concentration ([SDZ] = 40 µg L-1). Aside of SDZ, a suit of 65 other CECs were also identified in the UWW sample using LC-MS spectrometry. A fast-screening test showed the heterogeneous photocatalytic system was able to remove most of the detected CECs from UWW, by either adsorption and/or photocatalysis.


Assuntos
Dióxido de Silício , Águas Residuárias , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
Chemosphere ; 278: 130401, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33839382

RESUMO

Pesticides are chemical compounds widely used to combat pests in crops, and they thus play a key role in agricultural production. However, due to their persistence in aquatic environments, even at low concentrations, their use has been considered an environmental problem and caused concern regarding the adverse effects on human health. This paper reports, for the first time, the mechanisms, kinetics, and an evaluation of the toxicity of picloram degradation initiated by OH radicals in the aqueous environment using quantum chemistry and computational toxicology calculations. The rate constants are calculated using a combination of formulations derived from the Transition State Theory in a realistic temperature range (250-310 K). The results indicate that the two favorable pathways (R1 and R5) of OH -based reactions occur by addition to the pyridine ring. The calculated rate constant at 298 K is compared with the overall second-order reaction rate constant, quantified herein experimentally via the competition kinetics method and data available in the literature showing an excellent agreement. The toxicity assessment and a photolysis study provide important information: i) picloram and the majority of degradation products are estimated as harmful; however, ii) these compounds can suffer photolysis in sunlight. The results of the present study can help understand the mechanism of picloram, also providing important clues regarding risk assessment in aquatic environments as well as novel experimental information.


Assuntos
Radical Hidroxila , Poluentes Químicos da Água , Humanos , Cinética , Oxirredução , Picloram , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Environ Sci Pollut Res Int ; 28(19): 24191-24205, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33728601

RESUMO

The degradation of three pesticides, azoxystrobin (AZO), difenoconazole (DFZ), and imidacloprid (IMD), commonly found in the tomato rinse water, was studied through UVC (251-257 nm) and UVC/H2O2 photolysis. The results showed that direct photolysis follows pseudo-first-order kinetics, with total AZO and IMD removals within 15 min, using 21.8 and 28.6 W m-2, respectively, while the highest percentage of DFZ degradation was 51.7% at 28.6 W m-2 UVC. The estimated quantum yields were 0.572, 0.028, and 0.061 mol Einstein-1 for AZO, DFZ, and IMD, respectively. With regard to UVC/H2O2, total pesticide removal was achieved after 10 min, while optimal treatment conditions in relation to the pesticide removal rates, estimated through the sequential Doehlert design, were about [H2O2]0 = 130 mg L-1 and 26 W m-2. Cytotoxicity and genotoxicity assays carried out with Allium cepa, for real industrial tomato rinse water sampled from washing belts did not show abnormalities during cell division, with total pesticides degradation after 15 min, demonstrating the potential application of the UVC/H2O2 process as a viable localized treatment with a focus on the possible reuse of treated water.


Assuntos
Praguicidas , Solanum lycopersicum , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Oxirredução , Fotólise , Raios Ultravioleta , Água , Poluentes Químicos da Água/análise
6.
Environ Sci Pollut Res Int ; 28(19): 24023-24033, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33415626

RESUMO

Solar-driven photocatalysis is a promising water-cleaning and energy-producing technology that addresses some of the most urgent engineering problems of the twenty-first century: universal access to potable water, use of renewable energy, and mitigation of CO2 emissions. In this work, we aim at improving the efficiency of solar-driven photocatalysis by studying a novel reactor design based on microfluidic principles using 3D-printable geometries. The printed reactors had a dimensional accuracy of 97%, at a cost of less than $1 per piece. They were packed with 1.0-mm glass and steel beads coated with ZnO synthesised by a sol-gel routine, resulting in a bed with 46.6% void fraction (reaction volume of ca. 840 µL and equivalent flow diameter of 580 µm) and a specific surface area of 3200 m2 m-3. Photocatalytic experiments, under sunlight-level UV-A irradiation, showed that reactors packed with steel supports had apparent reaction rates ca. 75% higher than those packed with glass supports for the degradation of an aqueous solution of acetaminophen; however, they were strongly deactivated after the first use suggesting poor fixation. Glass supports showed no measurable deactivation after three consecutive uses. The apparent first-order reaction rate constants were between 1.9 and 9.5 × 10-4 s-1, ca. ten times faster than observed for conventional slurry reactors. The mass transfer was shown to be efficient (Sh > 7.7) despite the catalyst being immobilised onto fixed substrates. Finally, the proposed reactor design has the merit of a straightforward scaling out by sizing the irradiation window according to design specifications, as exemplified in the paper.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Catálise , Luz Solar , Titânio
7.
Environ Sci Pollut Res Int ; 28(19): 24057-24066, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33420930

RESUMO

The presence of toxic chlorinated compounds in drinking water, generated during the disinfection step in water treatment plants, is of great concern for public health. In the present study, the performance of the UVC/H2O2 process, preceded by zero-valent-copper reduction, was evaluated for degrading 2,4,6-trichlorophenol (TCP). With this aim, the oxidation performed alone or in combination with the pre-reductive step was evaluated regarding TCP concentration over time, removal rate, mineralization, and toxicity to Vibrio fischeri, as well as oxidant dosage and the effect of water matrix. The UV/H2O2 process achieved fast (kobs = 1.4 min-1) and complete TCP degradation, as well as important mineralization (40.4%), with best results obtained for initial H2O2 concentration of 0.056 mmol L-1. Coupling of reductive and oxidative processes intensified contaminant mineralization, due to the synergistic effect of copper ions leached in the reductive process, particularly Cu(I), providing an additional route of H2O2 activation for generating HO• radicals (photo-Fenton-like process). High toxicity removals and increased mineralization could be successfully accomplished by the combined processes even in tap water, which is a clear advantage for practical application.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Clorofenóis , Cobre , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Água
8.
Chemosphere ; 244: 125461, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31816552

RESUMO

The degradation of highly toxic and persistent chlorinated organic compounds by zerovalent metals (ZVMs) has received considerable attention for in situ groundwater remediation. Due to its abundance and low toxicity, iron has been mostly applied for such purposes, despite several limitations, such as rapid surface passivation and little efficacy towards certain contaminants. Given that, we evaluated monometallic zerovalent iron (ZVI), copper (ZVC) and zinc (ZVZ), and bimetallic copper-coated ZVI (ZVI/Cu) and ZVZ (ZVZ/Cu) for anoxic reductive degradation of chlorpyrifos (CP). Two approaches to enhance metal reactivity were investigated: the synthesis of bimetallic particles with copper and the comparison between micro and nanoparticles. All of the tested monometallic and bimetallic particles dechlorinated the target molecule, although complete chlorine removal was not achieved by any metal during the 30-d treatment period. Coating the zerovalent monometallic particles with copper enhanced reactivity. Reactivity was ZVC > ZVZ > ZVI for monometallic particles and ZVZ/Cu > ZVI/Cu for bimetallic microparticles. The analysis of the degradation products indicated the presence of dechlorinated compounds as well as 3,5,6-trichloro-2-pyridinol, a hydrolysis product.


Assuntos
Clorpirifos/química , Poluentes Químicos da Água/química , Cloro , Cobre , Recuperação e Remediação Ambiental , Água Subterrânea , Ferro , Modelos Químicos , Compostos Orgânicos
9.
Artigo em Inglês | MEDLINE | ID: mdl-31328643

RESUMO

The herbicide amicarbazone (AMZ), which appeared as a possible alternative to atrazine, presents moderate environmental persistence and is unlikely to be removed by conventional water treatment techniques. Advanced oxidation processes (AOPs) driven by •OH and/or SO4•- radicals are then promising alternatives to AMZ-contaminated waters remediation, even though, in some cases, they can originate more toxic degradation products than the parent-compound. Therefore, assessing treated solutions toxicity prior to disposal is of extreme importance. In this study, the toxicity of AMZ solutions, before and after treatment with different •OH-driven and SO4•--driven AOPs, was evaluated for five different microorganisms: Vibrio fischeri, Chlorella vulgaris, Tetrahymena thermophila, Escherichia coli, and Bacillus subtilis. In general, the toxic response of AMZ was greatly affected by the addition of reactants, especially when persulfate (PS) and/or Fe(III)-carboxylate complexes were added. The modifications of this response after treatment were correlated with AMZ intermediates, which were identified by mass spectrometry. Thus, low molecular weight by-products, resulting from fast degradation kinetics, were associated with increased toxicity to bacteria and trophic effects to microalgae. These observations were compared with toxicological predictions given by a Structure-Activity Relationships software, which revealed to be fairly compatible with our empirical findings.


Assuntos
Radical Hidroxila/química , Sulfatos/química , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Aliivibrio fischeri/efeitos dos fármacos , Chlorella vulgaris/efeitos dos fármacos , Compostos Férricos/química , Cinética , Oxirredução , Triazóis/análise , Poluentes Químicos da Água/análise
10.
Environ Sci Pollut Res Int ; 25(6): 5474-5483, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29214480

RESUMO

Alarming amounts of organic pollutants are being detected in waterbodies due to their ineffective removal by conventional treatment techniques, which warn of the urgent need of developing new technologies for their remediation. In this context, advanced oxidation processes (AOPs), especially those based on Fenton reactions, have proved to be suitable alternatives, due to their efficacy of removing persistent organic compounds. However, the use of ferrous iron in these processes has several operational constraints; to avoid this, an alternative iron source was here investigated: zero-valent-iron (ZVI). A Fenton-like process based on the activation of a recently explored oxidant-persulfate (PS)-with ZVI was applied to degrade an emerging contaminant: Amicarbazone (AMZ). The influence of ZVI size and source, PS/ZVI ratio, pH, UVA radiation, dissolved O2, and inorganic ions was evaluated in terms of AMZ removal efficiency. So far, this is the first time these parameters are simultaneously investigated, in the same study, to evaluate a ZVI-activated PS process. The radical mechanism was also explored and two radical scavengers were used to determine the identity of major active species taking part in the degradation of AMZ. The degradation efficiency was found to be strongly affected by the ZVI dosage, while positively affected by the PS concentration. The PS/ZVI system enabled AMZ degradation in a wide range of pH, although with a lower efficiency under slightly alkaline conditions. Dissolved O2 revealed to play an important role in reaction kinetics as well as the presence of inorganic ions. UVA radiation seems to improve the degradation kinetics only in the presence of extra O2 content. Radicals quenching experiments indicated that both sulfate (SO4•-) and hydroxyl (•OH) radicals contributed to the overall oxidation performance, but SO4•- was the dominant oxidative species.


Assuntos
Ferro/química , Sulfatos/química , Triazóis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Cinética , Oxirredução , Triazóis/química , Poluentes Químicos da Água/química
11.
Chemosphere ; 184: 981-991, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28658741

RESUMO

Photochemical redox reactions of Fe(III) complexes in surface waters are important sources of radical species, therefore contributing to the sunlight-driven elimination of waterborne recalcitrant contaminants. In this study, the effects of three Fe(III)-carboxylates (i.e., oxalate, citrate, and tartrate) on the UVA photoinduced oxidation of the herbicide amicarbazone (AMZ) were investigated. A Doehlert experimental design was applied to find the Fe(III):ligand ratios and pH that achieved the fastest AMZ degradation rate. The results indicated optimal ratios of 1:10 (Fe(III):oxalate), 1:4 (Fe(III):citrate), and 1:1 (Fe(III):tartrate), with the [Fe(III)]0 set at 0.1 mmol L-1 and the best pH found to be 3.5 for all the complexes. In addition, a statistical model that predicts the observed degradation rate constant (kobs) as a function of pH and Fe(III):carboxylate ratio was obtained for each complex, enabling AMZ-photodegradation predictions based on these two variables. To the best of our knowledge, this is the first time that such models are proposed. Not only the pH-dependent speciation of Fe(III) in solution but also the time profiles of photogenerated OH, Fe(II), and H2O2 gave appropriate support to the experimental results. Additional experiments using a sampled sewage treatment plant effluent suggest that the addition of aqua and/or Fe(III)-oxalate complexes to the matrix may also be effective for AMZ removal from natural waters in case their natural occurrence is not high enough to promote pollutant degradation. Therefore, the inclusion of Fe(III)-complexes in investigations dealing with the environmental fate of emerging pollutants in natural waterbodies is strongly recommended.


Assuntos
Compostos Férricos/química , Modelos Químicos , Fotólise , Poluentes Químicos da Água/química , Ácidos Carboxílicos , Citratos , Ácido Cítrico/química , Peróxido de Hidrogênio/química , Oxalatos/química , Oxirredução , Projetos de Pesquisa , Luz Solar , Água/química , Poluentes Químicos da Água/análise
12.
Water Res ; 93: 20-29, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26878479

RESUMO

The role of aquatic natural organic matter (NOM) in the removal of contaminants of emerging concern has been widely studied. Sulfamerazine (SMR), a sulfonamide antibiotic detected in aquatic environments, is implicated in environmental toxicity and may contribute to the resistance of bacteria to antibiotics. In aquatic systems sulfonamides may undergo direct photodegradation, and, indirect photodegradation through the generation of reactive species. Because some forms of NOM inhibit the photodegradation there is an increasing interest in correlating the spectroscopic parameters of NOM as potential indicators of its degradation in natural waters. Under the conditions used in this study, SMR hydrolysis was shown to be negligible; however, direct photolysis is a significant in most of the solutions studied. Photodegradation was investigated using standard solutions of NOM: Suwannee River natural organic matter (SRNOM), Suwannee River humic acid (SRHA), Suwannee River fulvic acid (SRFA), and Aldrich humic acid (AHA). The steady-state concentrations and formation rates of the reactive species and the SMR degradation rate constants (k1) were correlated with NOM spectroscopic parameters determined using UV-vis absorption, excitation-emission matrix (EEM) fluorescence spectroscopy, and proton nuclear magnetic resonance ((1)H NMR). SMR degradation rate constants (k1) were correlated with steady-state concentrations of NOM triplet-excited state ([(3)NOM(∗)]ss) and the corresponding formation rates ((3)NOM*) for SRNOM, SRHA, and AHA. The efficiency of SMR degradation was highest in AHA solution and was inhibited in solutions of SRFA. The steady-state concentrations of singlet oxygen ([(1)O2]ss) and the SMR degradation rate constants with singlet oxygen (k1O2) were linearly correlated with the total fluorescence and inversely correlated with the carbohydrate/protein content ((1)H NMR) for all forms of NOM. The total fluorescence and EEMs Peak A were confirmed as indicators of (1)O2 formation. Specific ultraviolet absorbance at 254 nm (SUVA254) and aromaticity showed potential correlations with the steady-state concentrations of hydroxyl radical ([HO]ss) and the corresponding formation rates (HO).


Assuntos
Compostos Orgânicos/química , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Sulfamerazina/química , Poluentes Químicos da Água/química , Antibacterianos/química , Benzopiranos/química , Substâncias Húmicas/análise , Radical Hidroxila/química , Cinética , Fotólise/efeitos da radiação , Espectroscopia de Prótons por Ressonância Magnética/métodos , Rios/química , Oxigênio Singlete/química , Soluções/química , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA