Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(11): e0258455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34731166

RESUMO

Miocene deposits of South America have yielded several species-rich assemblages of caviomorph rodents. They are mostly situated at high and mid- latitudes of the continent, except for the exceptional Honda Group of La Venta, Colombia, the faunal composition of which allowed to describe the late middle Miocene Laventan South American Land Mammal Age (SALMA). In this paper, we describe a new caviomorph assemblage from TAR-31 locality, recently discovered near Tarapoto in Peruvian Amazonia (San Martín Department). Based on mammalian biostratigraphy, this single-phased locality is unambiguously considered to fall within the Laventan SALMA. TAR-31 yielded rodent species found in La Venta, such as the octodontoid Ricardomys longidens Walton, 1990 (nom. nud.), the chinchilloids Microscleromys paradoxalis Walton, 1990 (nom. nud.) and M. cribriphilus Walton, 1990 (nom. nud.), or closely-related taxa. Given these strong taxonomic affinities, we further seize the opportunity to review the rodent dental material from La Venta described in the Ph.D. volume of Walton in 1990 but referred to as nomina nuda. Here we validate the recognition of these former taxa and provide their formal description. TAR-31 documents nine distinct rodent species documenting the four extant superfamilies of Caviomorpha, including a new erethizontoid: Nuyuyomys chinqaska gen. et sp. nov. These fossils document the most diverse caviomorph fauna for the middle Miocene interval of Peruvian Amazonia to date. This rodent discovery from Peru extends the geographical ranges of Ricardomys longidens, Microscleromys paradoxalis, and M. cribriphilus, 1,100 km to the south. Only one postcranial element of rodent was unearthed in TAR-31 (astragalus). This tiny tarsal bone most likely documents one of the two species of Microscleromys and its morphology indicates terrestrial generalist adaptations for this minute chinchilloid.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Roedores/anatomia & histologia , Dente/anatomia & histologia , Animais , Humanos , Mamíferos/anatomia & histologia , Peru , Filogenia
2.
J Hum Evol ; 146: 102835, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652341

RESUMO

The Honda Group of La Venta, Colombia, has yielded a wide array of crown platyrrhine primates, documenting the late Middle Miocene epoch (ca. 13.1-12.6 Ma, Laventan South American Land Mammal Age). Although exceptional, this record represents only a snapshot of the evolutionary history of New World monkeys because virtually none of the primate taxa recorded at La Venta had so far been found elsewhere. We describe here few dental remains of a cebine platyrrhine discovered from Laventan deposits in the San Martín Department of Peru (Peruvian Amazonia). The primate dental specimens from that new fossil-bearing locality (TAR-31) are strongly reminiscent morphologically of the teeth of Neosaimiri fieldsi from La Venta. However, given that several aspects of the dental variability from TAR-31 are unknown, we prefer to provide an assignment with open nomenclature (i.e., N. cf. fieldsi), instead of formally referring these remains to N. fieldsi, pending the discovery of additional specimens. The occurrence of Neosaimiri in Peru, in coeval deposits of La Venta, thus represents a second and southernmost record of that low-latitude genus in the Neotropics, thereby demonstrating its wide distribution along the northwestern edge of the Pebas Mega-Wetland System, in tropical western South America.


Assuntos
Distribuição Animal , Fósseis , Saimirinae , Animais , Fósseis/anatomia & histologia , Peru , Saimirinae/anatomia & histologia , Dente/anatomia & histologia
3.
Proc Biol Sci ; 285(1881)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30051854

RESUMO

Carbon isotopic signatures recorded in vertebrate tissues derive from ingested food and thus reflect ecologies and ecosystems. For almost two decades, most carbon isotope-based ecological interpretations of extant and extinct herbivorous mammals have used a single diet-bioapatite enrichment value (14‰). Assuming this single value applies to all herbivorous mammals, from tiny monkeys to giant elephants, it overlooks potential effects of distinct physiological and metabolic processes on carbon fractionation. By analysing a never before assessed herbivorous group spanning a broad range of body masses-sloths-we discovered considerable variation in diet-bioapatite δ13C enrichment among mammals. Statistical tests (ordinary least squares, quantile, robust regressions, Akaike information criterion model tests) document independence from phylogeny, and a previously unrecognized strong and significant correlation of δ13C enrichment with body mass for all mammalian herbivores. A single-factor body mass model outperforms all other single-factor or more complex combinatorial models evaluated, including for physiological variables (metabolic rate and body temperature proxies), and indicates that body mass alone predicts δ13C enrichment. These analyses, spanning more than 5 orders of magnitude of body sizes, yield a size-dependent prediction of isotopic enrichment across Mammalia and for distinct digestive physiologies, permitting reconstruction of foregut versus hindgut fermentation for fossils and refined mean annual palaeoprecipitation estimates based on δ13C of mammalian bioapatite.


Assuntos
Apatitas/metabolismo , Peso Corporal , Isótopos de Carbono/metabolismo , Herbivoria , Mamíferos/fisiologia , Animais , Modelos Biológicos
4.
Am J Phys Anthropol ; 161(3): 478-493, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27430626

RESUMO

OBJECTIVES: Undoubted fossil Cebidae have so far been primarily documented from the late middle Miocene of Colombia, the late Miocene of Brazilian Amazonia, the early Miocene of Peruvian Amazonia, and very recently from the earliest Miocene of Panama. The evolutionary history of cebids is far from being well-documented, with notably a complete blank in the record of callitrichine stem lineages until and after the late middle Miocene (Laventan SALMA). Further documenting their evolutionary history is therefore of primary importance. MATERIAL: Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have allowed for the discovery of an early late Miocene (ca. 11 Ma; Mayoan SALMA) fossil primate-bearing locality (CTA-43; Pebas Formation). In this study, we analyze the primate material, which consists of five isolated teeth documenting two distinct Cebidae: Cebus sp., a medium-sized capuchin (Cebinae), and Cebuella sp., a tiny marmoset (Callitrichinae). RESULTS: Although limited, this new fossil material of platyrrhines contributes to documenting the post-Laventan evolutionary history of cebids, and besides testifies to the earliest occurrences of the modern Cebuella and Cebus/Sapajus lineages in the Neotropics. Regarding the evolutionary history of callitrichine marmosets, the discovery of an 11 Ma-old fossil representative of the modern Cebuella pushes back by at least 6 Ma the age of the Mico/Cebuella divergence currently proposed by molecular biologists (i.e., ca. 4.5 Ma). This also extends back to > 11 Ma BP the divergence between Callithrix and the common ancestor (CA) of Mico/Cebuella, as well as the divergence between the CA of marmosets and Callimico (Goeldi's callitrichine). DISCUSSION: This discovery from Peruvian Amazonia implies a deep evolutionary root of the Cebuella lineage in the northwestern part of South America (the modern western Amazon basin), slightly before the recession of the Pebas mega-wetland system (PMWS), ca. 10.5 Ma, and well-before the subsequent establishment of the Amazon drainage system (ca. 9-7 Ma). During the late middle/early late Miocene interval, the PMWS was seemingly not a limiting factor for dispersals and widespread distribution of terrestrial mammals, but it was also likely a source of diversification via a complex patchwork of submerged/emerged lands varying through time.


Assuntos
Callithrix/anatomia & histologia , Cebus/anatomia & histologia , Dente/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Fósseis , Peru
5.
J Hum Evol ; 97: 159-75, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27457552

RESUMO

Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have resulted in the discovery of a late Oligocene (ca. 26.5 Ma; Chambira Formation) fossil primate-bearing locality (CTA-61). In this paper, we analyze the primate material consisting of two isolated upper molars, the peculiar morphology of which allows us to describe a new medium-sized platyrrhine monkey: Canaanimico amazonensis gen. et sp. nov. In addition to the recent discovery of Perupithecus ucayaliensis, a primitive anthropoid taxon of African affinities from the alleged latest Eocene Santa Rosa locality (Peruvian Amazonia), the discovery of Canaanimico adds to the evidence that primates were well-established in the Amazonian Basin during the Paleogene. Our phylogenetic results based on dental evidence show that none of the early Miocene Patagonian taxa (Homunculus, Carlocebus, Soriacebus, Mazzonicebus, Dolichocebus, Tremacebus, and Chilecebus), the late Oligocene Bolivian Branisella, or the Peruvian Canaanimico, is nested within a crown platyrrhine clade. All these early taxa are closely related and considered here as stem Platyrrhini. Canaanimico is nested within the Patagonian Soriacebinae, and closely related to Soriacebus, thereby extending back the soriacebine lineage to 26.5 Ma. Given the limited dental evidence, it is difficult to assess if Canaanimico was engaged in a form of pitheciine-like seed predation as is observed in Soriacebus and Mazzonicebus, but dental microwear patterns recorded on one upper molar indicate that Canaanimico was possibly a fruit and hard-object eater. If Panamacebus, a recently discovered stem cebine from the early Miocene of Panama, indicates that the crown platyrrhine radiation was already well underway by the earliest Miocene, Canaanimico indicates in turn that the "homunculid" radiation (as a part of the stem radiation) was well underway by the late Oligocene. These new data suggest that the stem radiation likely occurred in the Neotropics during the Oligocene, and that several stem lineages independently reached Patagonia during the early Miocene. Finally, we are still faced with a "layered" pattern of platyrrhine evolution, but modified in terms of timing of cladogeneses. If the crown platyrrhine radiation occurred in the Neotropics around the Oligocene-Miocene transition (or at least during the earliest Miocene), it was apparently concomitant with the diversification of the latest stem forms in Patagonia.


Assuntos
Fósseis/anatomia & histologia , Filogenia , Platirrinos/anatomia & histologia , Platirrinos/classificação , Animais , Evolução Biológica , Dente Molar/anatomia & histologia , Peru
6.
PLoS One ; 11(4): e0152453, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27097031

RESUMO

Gavialoid crocodylians are the archetypal longirostrine archosaurs and, as such, understanding their patterns of evolution is fundamental to recognizing cranial rearrangements and reconstructing adaptive pathways associated with elongation of the rostrum (longirostry). The living Indian gharial Gavialis gangeticus is the sole survivor of the group, thus providing unique evidence on the distinctive biology of its fossil kin. Yet phylogenetic relationships and evolutionary ecology spanning ~70 million-years of longirostrine crocodylian diversification remain unclear. Analysis of cranial anatomy of a new proto-Amazonian gavialoid, Gryposuchus pachakamue sp. nov., from the Miocene lakes and swamps of the Pebas Mega-Wetland System reveals that acquisition of both widely separated and protruding eyes (telescoped orbits) and riverine ecology within South American and Indian gavialoids is the result of parallel evolution. Phylogenetic and morphometric analyses show that, in association with longirostry, circumorbital bone configuration can evolve rapidly for coping with trends in environmental conditions and may reflect shifts in feeding strategy. Our results support a long-term radiation of the South American forms, with taxa occupying either extreme of the gavialoid morphospace showing preferences for coastal marine versus fluvial environments. The early biogeographic history of South American gavialoids was strongly linked to the northward drainage system connecting proto-Amazonian wetlands to the Caribbean region.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Evolução Biológica , Crânio/anatomia & histologia , Áreas Alagadas , Animais , Fósseis , Paleontologia , Filogenia
7.
Proc Biol Sci ; 282(1804): 20142490, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25716785

RESUMO

Amazonia contains one of the world's richest biotas, but origins of this diversity remain obscure. Onset of the Amazon River drainage at approximately 10.5 Ma represented a major shift in Neotropical ecosystems, and proto-Amazonian biotas just prior to this pivotal episode are integral to understanding origins of Amazonian biodiversity, yet vertebrate fossil evidence is extraordinarily rare. Two new species-rich bonebeds from late Middle Miocene proto-Amazonian deposits of northeastern Peru document the same hyperdiverse assemblage of seven co-occurring crocodylian species. Besides the large-bodied Purussaurus and Mourasuchus, all other crocodylians are new taxa, including a stem caiman-Gnatusuchus pebasensis-bearing a massive shovel-shaped mandible, procumbent anterior and globular posterior teeth, and a mammal-like diastema. This unusual species is an extreme exemplar of a radiation of small caimans with crushing dentitions recording peculiar feeding strategies correlated with a peak in proto-Amazonian molluscan diversity and abundance. These faunas evolved within dysoxic marshes and swamps of the long-lived Pebas Mega-Wetland System and declined with inception of the transcontinental Amazon drainage, favouring diversification of longirostrine crocodylians and more modern generalist-feeding caimans. The rise and demise of distinctive, highly productive aquatic ecosystems substantially influenced evolution of Amazonian biodiversity hotspots of crocodylians and other organisms throughout the Neogene.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/fisiologia , Evolução Biológica , Fósseis , Especiação Genética , Áreas Alagadas , Jacarés e Crocodilos/classificação , Animais , Biodiversidade , Peru , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA