Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
3.
Front Cell Infect Microbiol ; 12: 913619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846770

RESUMO

Diplodia seriata in the family Botryosphaeriaceae is a cosmopolitan phytopathogenic fungus and is responsible for causing cankers, fruit rot and leaf spots on economically important plants. In this study, we characterized the virome of a single Pakistani strain (L3) of D. seriata. Several viral-like contig sequences were obtained via a previously conducted next-generation sequencing analysis. Multiple infection of the L3 strain by eight RNA mycoviruses was confirmed through RT-PCR using total RNA samples extracted from this strain; the entire genomes were determined via Sanger sequencing of RT-PCR and RACE clones. A BLAST search and phylogenetic analyses indicated that these eight mycoviruses belong to seven different viral families. Four identified mycoviruses belong to double-stranded RNA viral families, including Polymycoviridae, Chrysoviridae, Totiviridae and Partitiviridae, and the remaining four identified mycoviruses belong to single-stranded RNA viral families, i.e., Botourmiaviridae, and two previously proposed families "Ambiguiviridae" and "Splipalmiviridae". Of the eight, five mycoviruses appear to represent new virus species. A morphological comparison of L3 and partially cured strain L3ht1 suggested that one or more of the three viruses belonging to Polymycoviridae, "Splipalmiviridae" and "Ambiguiviridae" are involved in the irregular colony phenotype of L3. To our knowledge, this is the first report of diverse virome characterization from D. seriata.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Ascomicetos/virologia , Micovírus/classificação , Micovírus/isolamento & purificação , Genoma Viral , Paquistão , Filogenia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA de Cadeia Dupla/genética , RNA Viral/genética
4.
Arch Virol ; 167(4): 1201-1204, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35246731

RESUMO

The family Partitiviridae has five genera, among which is the genus Deltapartitivirus. We report here the complete genome sequence of a deltapartitivirus from red clover, termed "red clover cryptic virus 3" (RCCV3). RCCV3 has a bisegmented double-stranded (ds) RNA genome. dsRNA1 and dsRNA2 are 1580 and 1589 nucleotides (nt) in length and are predicted to encode an RNA-directed RNA polymerase (RdRP) and a capsid protein (CP), respectively. The RCCV3 RdRP shares the highest sequence identity with the RdRP of a previously reported deltapartitivirus, Medicago sativa deltapartitivirus 1 (MsDPV1) (76.5%), while the RCCV3 CP shows 50% sequence identity to the CP of MsDPV1. RdRP- and CP-based phylogenetic trees place RCCV3 into a clade of deltapartitiviruses. The sequence and phylogenetic analyses clearly indicate that RCCV3 represents a new species in the genus Deltapartitivirus. RCCV3 was detectable in all three tested cultivars of red clover.


Assuntos
Vírus de RNA , Trifolium , Vírus não Classificados , Genoma Viral , Filogenia , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Vírus não Classificados/genética
5.
Virus Res ; 307: 198606, 2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-34688782

RESUMO

Positive-sense (+), single-stranded (ss) RNA viruses with divided RNA-dependent RNA polymerase (RdRP) domains have been reported from diverse filamentous ascomycetes since 2020. These viruses are termed splipalmiviruses or polynarnaviruses and have been characterized largely at the sequence level, but ill-defined biologically. Cryphonectria naterciae, from which only one virus has been reported, is an ascomycetous fungus potentially plant-pathogenic to chestnut and oak trees. We molecularly characterized multiple viruses in a single Portuguese isolate (C0614) of C. naterciae, taking a metatranscriptomic and conventional double-stranded RNA approach. Among them are a novel splipalmivirus (Cryphonectria naterciae splipalmivirus 1, CnSpV1) and a novel fusagravirus (Cryphonectria naterciae fusagravirus 1, CnFGV1). This study focused on the former virus. CnSpV1 has a tetra-segmented, (+)ssRNA genome (RNA1 to RNA4). As observed for other splipalmiviruses reported in 2020 and 2021, the RdRP domain is separately encoded by RNA1 (motifs F, A and B) and RNA2 (motifs C and D). A hypothetical protein encoded by the 5'-proximal open reading frame of RNA3 shows similarity to a counterpart conserved in some splipalmiviruses. The other RNA3-encoded protein and RNA4-encoded protein show no similarity with known proteins in a blastp search. The tetra-segment nature was confirmed by the conserved terminal sequences of the four CnSpV1 segments (RNA1 to RNA4) and their 100% coexistence in over 100 single conidial isolates tested. The experimental introduction of CnSpV1 along with CnFGV1 into a virus free strain C0754 of C. naterciae vegetatively incompatible with C0614 resulted in no phenotypic alteration, suggesting asymptomatic infection. The protoplast fusion assay indicates a considerably narrow host range of CnSpV1, restricted to the species C. naterciae and C. carpinicola. This study contributes to better understanding of the molecular and biological properties of this unique group of viruses.


Assuntos
Ascomicetos , Quercus , Vírus de RNA , Vírus , Ascomicetos/genética , Especificidade de Hospedeiro , Fases de Leitura Aberta , Filogenia , Quercus/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA , Vírus/genética
6.
Fungal Biol ; 125(1): 69-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33317778

RESUMO

Two isolates of Rosellinia necatrix (Rn118-8 and Rn480) have previously obtained from diseased avocado trees in commercial orchards of the coastal area in southern Spain. Rn118-8 and Rn480 have weak virulence on avocado plants, and are infected by R. necatrix hypovirus 2 (RnHV2). In this work, the possible biological effects of the hypovirus on R. necatrix were tested. First, RnHV2 was transmitted from each of Rn118-8 and Rn480 to a highly virulent, RnHV2-free isolate of R. necatrix (Rn400) through hyphal anastomosis, using zinc compounds which attenuate the mycelial incompatibility reactions and allow for horizontal virus transfer between vegetatively incompatible fungal strains. Next, we carried out an analysis of growth rate in vitro and a virulence test of these newly infected strains in avocado plants. We obtained five strains of Rn400 infected by RnHV2 after horizontal transmission, and showed some of them to have lower colony growth in vitro and lower virulence on avocado plants compared with virus-free Rn400. These results suggest that R. necatrix isolates infected by RnHV2 could be used as novel virocontrol agents to combat avocado white root rot.


Assuntos
Ascomicetos , Micovírus , Ascomicetos/patogenicidade , Ascomicetos/virologia , Micovírus/fisiologia , Persea/microbiologia , Raízes de Plantas/microbiologia , Espanha
7.
Front Microbiol ; 11: 1064, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670213

RESUMO

Partitiviruses (dsRNA viruses, family Partitiviridae) are ubiquitously detected in plants and fungi. Although previous surveys suggested their omnipresence in the white root rot fungus, Rosellinia necatrix, only a few of them have been molecularly and biologically characterized thus far. We report the characterization of a total of 20 partitiviruses from 16 R. necatrix strains belonging to 15 new species, for which "Rosellinia necatrix partitivirus 11-Rosellinia necatrix partitivirus 25" were proposed, and 5 previously reported species. The newly identified partitiviruses have been taxonomically placed in two genera, Alphapartitivirus, and Betapartitivirus. Some partitiviruses were transfected into reference strains of the natural host, R. necatrix, and an experimental host, Cryphonectria parasitica, using purified virions. A comparative analysis of resultant transfectants revealed interesting differences and similarities between the RNA accumulation and symptom induction patterns of R. necatrix and C. parasitica. Other interesting findings include the identification of a probable reassortment event and a quintuple partitivirus infection of a single fungal strain. These combined results provide a foundation for further studies aimed at elucidating mechanisms that underly the differences observed.

8.
Environ Microbiol ; 20(4): 1464-1483, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411500

RESUMO

To reveal mycovirus diversity, we conducted a search of as-yet-unexplored Mediterranean isolates of the phytopathogenic ascomycete Rosellinia necatrix for virus infections. Of seventy-nine, eleven fungal isolates tested RNA virus-positive, with many showing coinfections, indicating a virus incidence of 14%, which is slightly lower than that (approximately 20%) previously reported for extensive surveys of over 1000 Japanese R. necatrix isolates. All viral sequences were fully or partially characterized by Sanger and next-generation sequencing. These sequences appear to represent isolates of various new species spanning at least 6 established or previously proposed families such as Partiti-, Hypo-, Megabirna-, Yado-kari-, Fusagra- and Fusarividae, as well as a newly proposed family, Megatotiviridae. This observation greatly expands the diversity of R. necatrix viruses, because no hypo-, fusagra- or megatotiviruses were previously reported from R. necatrix. The sequence analyses showed a rare horizontal gene transfer event of the 2A-like protease domain between a dsRNA (phlegivirus) and a positive-sense, single-stranded RNA virus (hypovirus). Moreover, many of the newly detected viruses showed the closest relation to viruses reported from fungi other than R. necatrix, such as Fusarium spp., which are sympatric to R. necatrix. These combined results imply horizontal virus transfer between these soil-inhabitant fungi.


Assuntos
Micovírus/genética , Vírus de RNA/genética , Xylariales/virologia , Sequência de Bases , Evolução Biológica , Transferência Genética Horizontal/genética , Região do Mediterrâneo , RNA de Cadeia Dupla , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA