Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Genomics ; 25(1): 6, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166563

RESUMO

BACKGROUND: Microsporidia are a large taxon of intracellular pathogens characterized by extraordinarily streamlined genomes with unusually high sequence divergence and many species-specific adaptations. These unique factors pose challenges for traditional genome annotation methods based on sequence similarity. As a result, many of the microsporidian genomes sequenced to date contain numerous genes of unknown function. Recent innovations in rapid and accurate structure prediction and comparison, together with the growing amount of data in structural databases, provide new opportunities to assist in the functional annotation of newly sequenced genomes. RESULTS: In this study, we established a workflow that combines sequence and structure-based functional gene annotation approaches employing a ChimeraX plugin named ANNOTEX (Annotation Extension for ChimeraX), allowing for visual inspection and manual curation. We employed this workflow on a high-quality telomere-to-telomere sequenced tetraploid genome of Vairimorpha necatrix. First, the 3080 predicted protein-coding DNA sequences, of which 89% were confirmed with RNA sequencing data, were used as input. Next, ColabFold was used to create protein structure predictions, followed by a Foldseek search for structural matching to the PDB and AlphaFold databases. The subsequent manual curation, using sequence and structure-based hits, increased the accuracy and quality of the functional genome annotation compared to results using only traditional annotation tools. Our workflow resulted in a comprehensive description of the V. necatrix genome, along with a structural summary of the most prevalent protein groups, such as the ricin B lectin family. In addition, and to test our tool, we identified the functions of several previously uncharacterized Encephalitozoon cuniculi genes. CONCLUSION: We provide a new functional annotation tool for divergent organisms and employ it on a newly sequenced, high-quality microsporidian genome to shed light on this uncharacterized intracellular pathogen of Lepidoptera. The addition of a structure-based annotation approach can serve as a valuable template for studying other microsporidian or similarly divergent species.


Assuntos
Genoma , Genômica , Anotação de Sequência Molecular
2.
Front Genet ; 14: 1244493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829276

RESUMO

Background: Xenacoelomorpha is a marine clade of microscopic worms that is an important model system for understanding the evolution of key bilaterian novelties, such as the excretory system. Nevertheless, Xenacoelomorpha genomics has been restricted to a few species that either can be cultured in the lab or are centimetres long. Thus far, no genomes are available for Nemertodermatida, one of the group's main clades and whose origin has been dated more than 400 million years ago. Methods: DNA was extracted from a single specimen and sequenced with HiFi following the PacBio Ultra-Low DNA Input protocol. After genome assembly, decontamination, and annotation, the genome quality was benchmarked using two acoel genomes and one Illumina genome as reference. The gene content of three cnidarians, three acoelomorphs, four deuterostomes, and eight protostomes was clustered in orthogroups to make inferences of gene content evolution. Finally, we focused on the genes related to the ultrafiltration excretory system to compare patterns of presence/absence and gene architecture among these clades. Results: We present the first nemertodermatid genome sequenced from a single specimen of Nemertoderma westbladi. Although genome contiguity remains challenging (N50: 60 kb), it is very complete (BUSCO: 80.2%, Metazoa; 88.6%, Eukaryota) and the quality of the annotation allows fine-detail analyses of genome evolution. Acoelomorph genomes seem to be relatively conserved in terms of the percentage of repeats, number of genes, number of exons per gene and intron size. In addition, a high fraction of genes present in both protostomes and deuterostomes are absent in Acoelomorpha. Interestingly, we show that all genes related to the excretory system are present in Xenacoelomorpha except Osr, a key element in the development of these organs and whose acquisition seems to be interconnected with the origin of the specialised excretory system. Conclusion: Overall, these analyses highlight the potential of the Ultra-Low Input DNA protocol and HiFi to generate high-quality genomes from single animals, even for relatively large genomes, making it a feasible option for sequencing challenging taxa, which will be an exciting resource for comparative genomics analyses.

3.
Nat Commun ; 14(1): 5164, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620373

RESUMO

Long-read sequencing has dramatically increased our understanding of human genome variation. Here, we demonstrate that long-read technology can give new insights into the genomic architecture of individual cells. Clonally expanded CD8+ T-cells from a human donor were subjected to droplet-based multiple displacement amplification (dMDA) to generate long molecules with reduced bias. PacBio sequencing generated up to 40% genome coverage per single-cell, enabling detection of single nucleotide variants (SNVs), structural variants (SVs), and tandem repeats, also in regions inaccessible by short reads. 28 somatic SNVs were detected, including one case of mitochondrial heteroplasmy. 5473 high-confidence SVs/cell were discovered, a sixteen-fold increase compared to Illumina-based results from clonally related cells. Single-cell de novo assembly generated a genome size of up to 598 Mb and 1762 (12.8%) complete gene models. In summary, our work shows the promise of long-read sequencing toward characterization of the full spectrum of genetic variation in single cells.


Assuntos
Genoma Humano , Genômica , Humanos , Tamanho do Genoma , Genoma Humano/genética , Linfócitos T CD8-Positivos , Ciclo Celular
4.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37479678

RESUMO

The Y chromosome is theorized to facilitate evolution of sexual dimorphism by accumulating sexually antagonistic loci, but empirical support is scarce. Due to the lack of recombination, Y chromosomes are prone to degenerative processes, which poses a constraint on their adaptive potential. Yet, in the seed beetle, Callosobruchus maculatus segregating Y linked variation affects male body size and thereby sexual size dimorphism (SSD). Here, we assemble C. maculatus sex chromosome sequences and identify molecular differences associated with Y-linked SSD variation. The assembled Y chromosome is largely euchromatic and contains over 400 genes, many of which are ampliconic with a mixed autosomal and X chromosome ancestry. Functional annotation suggests that the Y chromosome plays important roles in males beyond primary reproductive functions. Crucially, we find that, besides an autosomal copy of the gene target of rapamycin (TOR), males carry an additional TOR copy on the Y chromosome. TOR is a conserved regulator of growth across taxa, and our results suggest that a Y-linked TOR provides a male specific opportunity to alter body size. A comparison of Y haplotypes associated with male size difference uncovers a copy number variation for TOR, where the haplotype associated with decreased male size, and thereby increased sexual dimorphism, has two additional TOR copies. This suggests that sexual conflict over growth has been mitigated by autosome to Y translocation of TOR followed by gene duplications. Our results reveal that despite of suppressed recombination, the Y chromosome can harbor adaptive potential as a male-limited supergene.


Assuntos
Besouros , Variações do Número de Cópias de DNA , Masculino , Animais , Besouros/genética , Caracteres Sexuais , Cromossomo Y , Sementes
5.
Methods Mol Biol ; 2516: 39-50, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35922620

RESUMO

DNA methylations are one of the most well-known epigenetic modifications along with histone modifications and noncoding RNAs. They are found at specific sites along the DNA in all domains of life, with 5-mC and 6-mA/4-mC being well-characterized in eukaryotes and bacteria respectively, and they have not only been described as contributing to the structure of the double helix itself but also as regulators of DNA-based processes such as replication, transcription, and recombination. Different methods have been developed to accurately identify and/or map methylated motifs to decipher the involvement of DNA methylations in regulatory networks that affect the cellular state.Although DNA methylations have been detected along archaeal genomes, their involvement as regulators of DNA-based processes remains the least known. To highlight the importance of DNA methylations in the control of key cellular mechanisms and their dynamics in archaea cells, we have used single-molecule real-time (SMRT) sequencing. This sequencing technology allows the identification and direct mapping of the methylated motifs along the genome of an organism. In this chapter, we present a step-by-step protocol for detecting DNA methylations in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius using SMRT sequencing. This protocol can easily be adapted to other prokaryotes.


Assuntos
Sulfolobus acidocaldarius , DNA/metabolismo , Metilação de DNA , Genoma Arqueal , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo
7.
mSystems ; 7(2): e0151821, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35311563

RESUMO

Shewanella spp. play important ecological and biogeochemical roles, due in part to their versatile metabolism and swift integration of stimuli. While Shewanella spp. are primarily considered environmental microbes, Shewanella algae is increasingly recognized as an occasional human pathogen. S. algae shares the broad metabolic and respiratory repertoire of Shewanella spp. and thrives in similar ecological niches. In S. algae, nitrate and dimethyl sulfoxide (DMSO) respiration promote biofilm formation strain specifically, with potential implication of taxis and cyclic diguanosine monophosphate (c-di-GMP) signaling. Signal transduction systems in S. algae have not been investigated. To fill these knowledge gaps, we provide here an inventory of the c-di-GMP turnover proteome and chemosensory networks of the type strain S. algae CECT 5071 and compare them with those of 41 whole-genome-sequenced clinical and environmental S. algae isolates. Besides comparative analysis of genetic content and identification of laterally transferred genes, the occurrence and topology of c-di-GMP turnover proteins and chemoreceptors were analyzed. We found S. algae strains to encode 61 to 67 c-di-GMP turnover proteins and 28 to 31 chemoreceptors, placing S. algae near the top in terms of these signaling capacities per Mbp of genome. Most c-di-GMP turnover proteins were predicted to be catalytically active; we describe in them six novel N-terminal sensory domains that appear to control their catalytic activity. Overall, our work defines the c-di-GMP and chemosensory signal transduction pathways in S. algae, contributing to a better understanding of its ecophysiology and establishing S. algae as an auspicious model for the analysis of metabolic and signaling pathways within the genus Shewanella. IMPORTANCE Shewanella spp. are widespread aquatic bacteria that include the well-studied freshwater model strain Shewanella oneidensis MR-1. In contrast, the physiology of the marine and occasionally pathogenic species Shewanella algae is poorly understood. Chemosensory and c-di-GMP signal transduction systems integrate environmental stimuli to modulate gene expression, including the switch from a planktonic to sessile lifestyle and pathogenicity. Here, we systematically dissect the c-di-GMP proteome and chemosensory pathways of the type strain S. algae CECT 5071 and 41 additional S. algae isolates. We provide insights into the activity and function of these proteins, including a description of six novel sensory domains. Our work will enable future analyses of the complex, intertwined c-di-GMP metabolism and chemotaxis networks of S. algae and their ecophysiological role.


Assuntos
Proteínas de Bactérias , Shewanella , Humanos , Proteínas de Bactérias/genética , Proteoma , Biofilmes , Shewanella/genética , Genômica
8.
Sci Rep ; 11(1): 23214, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853367

RESUMO

There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.


Assuntos
Abelhas/genética , Abelhas/parasitologia , Metagenoma , Varroidae/fisiologia , Animais , Abelhas/microbiologia , Abelhas/virologia , Genoma Bacteriano , Genoma de Inseto , Genoma Viral , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Suécia
9.
Microbiol Resour Announc ; 10(31): e0055921, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351223

RESUMO

We report the complete genome sequence and base modification analysis of the Shewanella algae type strain CECT 5071 (= OK-1 = ATCC 51192 = DSM 9167 = IAM 14159). The genome is composed of a single chromosome of 4,924,764 bp, with a GC content of 53.10%.

10.
Sci Rep ; 10(1): 5956, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249797

RESUMO

The main biological threat to the western honeybee (Apis mellifera) is the parasitic mite Varroa destructor, largely because it vectors lethal epidemics of honeybee viruses that, in the absence of this mite, are relatively innocuous. The severe pathology is a direct consequence of excessive virus titres caused by this novel transmission route. However, little is known about how the virus adapts genetically during transmission and whether this influences the pathology. Here, we show that upon injection into honeybee pupae, the deformed wing virus type-A (DWV-A) quasispecies undergoes a rapid, extensive expansion of its sequence space, followed by strong negative selection towards a uniform, common shape by the time the pupae have completed their development, with no difference between symptomatic and asymptomatic adults in either DWV titre or genetic composition. This suggests that the physiological and molecular environment during pupal development has a strong, conservative influence on shaping the DWV-A quasispecies in emerging adults. There was furthermore no evidence of any progressive adaptation of the DWV-A quasispecies to serial intra-abdominal injection, simulating mite transmission, despite the generation of ample variation immediately following each transmission, suggesting that the virus either had already adapted to transmission by injection, or was unaffected by it.


Assuntos
Vetores Aracnídeos/virologia , Abelhas/parasitologia , Pupa/parasitologia , Quase-Espécies/genética , Vírus de RNA/genética , Varroidae/virologia , Animais
11.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958060

RESUMO

Genomic rearrangements associated with speciation often result in variation in chromosome number among closely related species. Malassezia species show variable karyotypes ranging between six and nine chromosomes. Here, we experimentally identified all eight centromeres in M. sympodialis as 3-5-kb long kinetochore-bound regions that span an AT-rich core and are depleted of the canonical histone H3. Centromeres of similar sequence features were identified as CENP-A-rich regions in Malassezia furfur, which has seven chromosomes, and histone H3 depleted regions in Malassezia slooffiae and Malassezia globosa with nine chromosomes each. Analysis of synteny conservation across centromeres with newly generated chromosome-level genome assemblies suggests two distinct mechanisms of chromosome number reduction from an inferred nine-chromosome ancestral state: (a) chromosome breakage followed by loss of centromere DNA and (b) centromere inactivation accompanied by changes in DNA sequence following chromosome-chromosome fusion. We propose that AT-rich centromeres drive karyotype diversity in the Malassezia species complex through breakage and inactivation.


Millions of yeast, bacteria and other microbes live in or on the human body. A type of yeast known as Malassezia is one of the most abundantmicrobes living on our skin. Generally, Malassezia do not cause symptoms in humans but are associated with dandruff, dermatitis and other skin conditions in susceptible individuals. They have also been found in the human gut, where they exacerbate Crohn's disease and pancreatic cancer. There are 18 closely related species of Malassezia and all have an unusually small amount of genetic material compared with other types of yeast. In yeast, like in humans, the genetic material is divided among several chromosomes. The number of chromosomes in different Malassezia species varies between six and nine. A region of each chromosome known as the centromere is responsible for ensuring that the equal numbers of chromosomes are passed on to their offspring. This means that any defects in centromeres can lead to the daughter yeast cells inheriting unequal numbers of chromosomes. Changes in chromosome number can drive the evolution of new species, but it remains unclear if and how centromere loss may have contributed to the evolution of Malassezia species. Sankaranarayanan et al. have now used biochemical, molecular genetic, and comparative genomic approaches to study the chromosomes of Malassezia species. The experiments revealed that nine Malassezia species had centromeres that shared common features such as being rich in adenine and thymine nucleotides, two of the building blocks of DNA. Sankaranarayanan et al. propose that these adenines and thymines make the centromeres more fragile leading to occasional breaks. This may have contributed to the loss of centromeres in some Malassezia cells and helped new species to evolve with fewer chromosomes. A better understanding of how Malassezia organize their genetic material should enable in-depth studies of how these yeasts interact with their human hosts and how they contribute to skin disease, cancer, Crohn's disease and other health conditions. More broadly, these findings may help scientists to better understand how changes in chromosomes cause new species to evolve.


Assuntos
Centrômero , Evolução Molecular , Cariotipagem , Malassezia/fisiologia , Cromossomos Fúngicos , Malassezia/classificação , Malassezia/genética , Especificidade da Espécie
12.
Sci Rep ; 9(1): 15753, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673019

RESUMO

Plasmodiophora brassicae is a soil-borne pathogen that attacks roots of cruciferous plants causing clubroot disease. The pathogen belongs to the Plasmodiophorida order in Phytomyxea. Here we used long-read SMRT technology to clarify the P. brassicae e3 genomic constituents along with comparative and phylogenetic analyses. Twenty contigs representing the nuclear genome and one mitochondrial (mt) contig were generated, together comprising 25.1 Mbp. Thirteen of the 20 nuclear contigs represented chromosomes from telomere to telomere characterized by [TTTTAGGG] sequences. Seven active gene candidates encoding synaptonemal complex-associated and meiotic-related protein homologs were identified, a finding that argues for possible genetic recombination events. The circular mt genome is large (114,663 bp), gene dense and intron rich. It shares high synteny with the mt genome of Spongospora subterranea, except in a unique 12 kb region delimited by shifts in GC content and containing tandem minisatellite- and microsatellite repeats with partially palindromic sequences. De novo annotation identified 32 protein-coding genes, 28 structural RNA genes and 19 ORFs. ORFs predicted in the repeat-rich region showed similarities to diverse organisms suggesting possible evolutionary connections. The data generated here form a refined platform for the next step involving functional analysis, all to clarify the complex biology of P. brassicae.


Assuntos
Núcleo Celular/genética , Genoma Mitocondrial , Genoma de Protozoário , Mitocôndrias/genética , Plasmodioforídeos/genética , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
13.
Nat Ecol Evol ; 3(12): 1725-1730, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740847

RESUMO

Genes with sex-biased expression show a number of unique properties and this has been seen as evidence for conflicting selection pressures in males and females, forming a genetic 'tug-of-war' between the sexes. However, we lack studies of taxa where an understanding of conflicting phenotypic selection in the sexes has been linked with studies of genomic signatures of sexual conflict. Here, we provide such a link. We used an insect where sexual conflict is unusually well understood, the seed beetle Callosobruchus maculatus, to test for molecular genetic signals of sexual conflict across genes with varying degrees of sex-bias in expression. We sequenced, assembled and annotated its genome and performed population resequencing of three divergent populations. Sex-biased genes showed increased levels of genetic diversity and bore a remarkably clear footprint of relaxed purifying selection. Yet, segregating genetic variation was also affected by balancing selection in weakly female-biased genes, while male-biased genes showed signs of overall purifying selection. Female-biased genes contributed disproportionally to shared polymorphism across populations, while male-biased genes, male seminal fluid protein genes and sex-linked genes did not. Genes showing genomic signatures consistent with sexual conflict generally matched life-history phenotypes known to experience sexually antagonistic selection in this species. Our results highlight metabolic and reproductive processes, confirming the key role of general life-history traits in sexual conflict.


Assuntos
Seleção Genética , Caracteres Sexuais , Feminino , Genoma , Genômica , Masculino , Fenótipo
14.
Nat Commun ; 10(1): 3311, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427571

RESUMO

Genome-wide analysis of DNA methylation patterns using single molecule real-time DNA sequencing has boosted the number of publicly available methylomes. However, there is a lack of tools coupling methylation patterns and the corresponding methyltransferase genes. Here we demonstrate a high-throughput method for coupling methyltransferases with their respective motifs, using automated cloning and analysing the methyltransferases in vectors carrying a strain-specific cassette containing all potential target sites. To validate the method, we analyse the genomes of the thermophile Moorella thermoacetica and the mesophile Acetobacterium woodii, two acetogenic bacteria having substantially modified genomes with 12 methylation motifs and a total of 23 methyltransferase genes. Using our method, we characterize the 23 methyltransferases, assign motifs to the respective enzymes and verify activity for 11 of the 12 motifs.


Assuntos
Acetobacterium/enzimologia , Proteínas de Bactérias/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Metiltransferases/metabolismo , Moorella/enzimologia , Acetobacterium/genética , Motivos de Aminoácidos/genética , Proteínas de Bactérias/genética , Metilação de DNA , DNA Bacteriano/metabolismo , Epigênese Genética , Genoma Bacteriano , Moorella/genética , Análise de Sequência de DNA
15.
Genome Biol Evol ; 9(10): 2697-2706, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048527

RESUMO

Animal mitogenomes are generally thought of as being economic and optimized for rapid replication and transcription. We use long-read sequencing technology to assemble the remarkable mitogenomes of four species of seed beetles. These are the largest circular mitogenomes ever assembled in insects, ranging from 24,496 to 26,613 bp in total length, and are exceptional in that some 40% consists of non-coding DNA. The size expansion is due to two very long intergenic spacers (LIGSs), rich in tandem repeats. The two LIGSs are present in all species but vary greatly in length (114-10,408 bp), show very low sequence similarity, divergent tandem repeat motifs, a very high AT content and concerted length evolution. The LIGSs have been retained for at least some 45 my but must have undergone repeated reductions and expansions, despite strong purifying selection on protein coding mtDNA genes. The LIGSs are located in two intergenic sites where a few recent studies of insects have also reported shorter LIGSs (>200 bp). These sites may represent spaces that tolerate neutral repeat array expansions or, alternatively, the LIGSs may function to allow a more economic translational machinery. Mitochondrial respiration in adult seed beetles is based almost exclusively on fatty acids, which reduces the need for building complex I of the oxidative phosphorylation pathway (NADH dehydrogenase). One possibility is thus that the LIGSs may allow depressed transcription of NAD genes. RNA sequencing showed that LIGSs are partly transcribed and transcriptional profiling suggested that all seven mtDNA NAD genes indeed show low levels of transcription and co-regulation of transcription across sexes and tissues.


Assuntos
Besouros/genética , Evolução Molecular , Genoma de Inseto , Genoma Mitocondrial , Transcriptoma , Animais , Besouros/classificação , DNA Intergênico/genética , Filogenia , Seleção Genética , Sequências de Repetição em Tandem
16.
Genome Announc ; 5(14)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385851

RESUMO

Sustainable biofuel production from lignocellulosic materials requires efficient and complete use of all abundant sugars in the biomass, including xylose. Here, we report on the de novo genome assemblies of two strains of the xylose-fermenting yeast Candida intermedia: CBS 141442 and PYCC 4715.

17.
Nucleic Acids Res ; 45(5): 2629-2643, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28100699

RESUMO

Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Malassezia/genética , Anotação de Sequência Molecular/métodos , Proteogenômica/métodos , Genes Fúngicos , Genoma Mitocondrial , Peptídeos/genética , Domínios Proteicos , Análise de Sequência de RNA
18.
Bone ; 84: 181-188, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748295

RESUMO

We investigated the impact of treatment with parathyroid hormone (PTH) and dexamethasone (DEX) for 2 and 24h by RNA sequencing of miRNAs in primary human bone (HOB) cells. A total of 207 million reads were obtained, and normalized absolute expression retrieved for 373 most abundant miRNAs. In naïve control cells, 7 miRNAs were differentially expressed (FDR<0.05) between the two time points. Ten miRNAs exhibited differential expression (FDR <0.05) across two time points and treatments after adjusting for expression in controls and were selected for downstream analyses. Results show significant effects on miRNA expression when comparing PTH with DEX at 2h with even more pronounced effects at 24h. Interestingly, several miRNAs exhibiting differences in expression are predicted to target genes involved in bone metabolism e.g. miR-30c2, miR-203 and miR-205 targeting RUNX2, and miR-320 targeting ß-catenin (CTNNB1) mRNA expression. CTNNB1and RUNX2 levels were decreased after DEX treatment and increased after PTH treatment. Our analysis also identified 2 putative novel miRNAs in PTH and DEX treated cells at 24h. RNA sequencing showed that PTH and DEX treatment affect miRNA expression in HOB cells and that regulated miRNAs in turn are correlated with expression levels of key genes involved in bone metabolism.


Assuntos
Dexametasona/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Osteócitos/metabolismo , Hormônio Paratireóideo/farmacologia , Sequência de Bases , Sequência Conservada/genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/química , MicroRNAs/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteócitos/efeitos dos fármacos , Reprodutibilidade dos Testes
19.
PLoS Genet ; 11(12): e1005747, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26714275

RESUMO

CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2's repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sítios de Ligação , Mutação , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/genética
20.
Appl Environ Microbiol ; 81(17): 5784-93, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092449

RESUMO

Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23.


Assuntos
Proteínas de Bactérias/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Polissacarídeos Bacterianos/deficiência , Infecções por Rotavirus/microbiologia , Rotavirus/fisiologia , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Feminino , Humanos , Fragmentos de Imunoglobulinas/genética , Lacticaseibacillus rhamnosus/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Probióticos/administração & dosagem , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA