Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Pathog ; 20(8): e1012446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39116185

RESUMO

HIV persistence in the brain is a barrier to cure, and potentially contributes to HIV-associated neurocognitive disorders. Whether HIV transcription persists in the brain despite viral suppression with antiretroviral therapy (ART) and is subject to the same blocks to transcription seen in other tissues and blood, is unclear. Here, we quantified the level of HIV transcripts in frontal cortex tissue from virally suppressed or non-virally suppressed people with HIV (PWH). HIV transcriptional profiling of frontal cortex brain tissue (and PBMCs where available) from virally suppressed (n = 11) and non-virally suppressed PWH (n = 13) was performed using digital polymerase chain reaction assays (dPCR). CD68+ myeloid cells or CD3+ T cells expressing HIV p24 protein present in frontal cortex tissue was detected using multiplex immunofluorescence imaging. Frontal cortex brain tissue from PWH had HIV TAR (n = 23/24) and Long-LTR (n = 20/24) transcripts. Completion of HIV transcription was evident in brain tissue from 12/13 non-virally suppressed PWH and from 5/11 virally suppressed PWH, with HIV p24+CD68+ cells detected in these individuals. While a block to proximal elongation was present in frontal cortex tissue from both PWH groups, this block was more extensive in virally suppressed PWH. These findings suggest that the brain is a transcriptionally active HIV reservoir in a subset of virally suppressed PWH.


Assuntos
Encéfalo , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Masculino , Encéfalo/metabolismo , Encéfalo/virologia , Adulto , Pessoa de Meia-Idade , Feminino , Transcrição Gênica , Lobo Frontal/metabolismo , Lobo Frontal/virologia
2.
AIDS ; 38(9): 1281-1291, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626436

RESUMO

OBJECTIVES: Some drugs that augment cell-intrinsic defenses or modulate cell death/survival pathways have been reported to selectively kill cells infected with HIV or Simian Immunodeficiency Virus (SIV), but comparative studies are lacking. We hypothesized that these drugs may differ in their ability to kill cells infected with intact and defective proviruses. DESIGN: To investigate this hypothesis, drugs were tested ex vivo on peripheral blood mononuclear cells (PBMC) from nine antiretroviral therapy (ART)-suppressed individuals. METHODS: We tested drugs currently in clinical use or human trials, including auranofin (p53 modulator), interferon alpha2A, interferon gamma, acitretin (RIG-I inducer), GS-9620/vesatolimod (TLR7 agonist), nivolumab (PD-1 blocker), obatoclax (Bcl-2 inhibitor), birinapant [inhibitor of apoptosis proteins (IAP) inhibitor], bortezomib (proteasome inhibitor), and INK128/sapanisertib [mammalian target of rapamycin mTOR] [c]1/2 inhibitor). After 6 days of treatment, we measured cell counts/viabilities and quantified levels of total, intact, and defective HIV DNA by droplet digital PCR (Intact Proviral DNA Assay). RESULTS: Obatoclax reduced intact HIV DNA [median = 27-30% of dimethyl sulfoxide control (DMSO)] but not defective or total HIV DNA. Other drugs showed no statistically significant effects. CONCLUSION: Obatoclax and other Bcl-2 inhibitors deserve further study in combination therapies aimed at reducing the intact HIV reservoir in order to achieve a functional cure and/or reduce HIV-associated immune activation.


Assuntos
Infecções por HIV , Indóis , Leucócitos Mononucleares , Provírus , Pirróis , Humanos , Indóis/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Pirróis/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Provírus/efeitos dos fármacos
3.
J Virus Erad ; 9(2): 100335, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37440871

RESUMO

Quantification of intact proviruses is a critical measurement in HIV cure studies both in vitro and in vivo. The widely adopted 'intact proviral DNA assay' (IPDA), designed to discriminate and quantify genetically intact HIV proviruses based on detection of two HIV sequence-specific targets, was originally validated using Bio-Rad's droplet digital PCR technology (ddPCR). Despite its advantages, ddPCR is limited in multiplexing capability (two-channel) and is both labor- and time intensive. To overcome some of these limitations, we utilized a nanowell-based digital PCR platform (dPCR, QIAcuity from Qiagen) which is a fully automated system that partitions samples into nanowells rather than droplets. In this study we adapted the IPDA assay to the QIAcuity platform and assessed its performance relative to ddPCR. The dPCR could differentiate between intact, 5' defective and 3' defective proviruses and was sensitive to single HIV copy input. We found the intra-assay and inter-assay variability was within acceptable ranges (with coefficient of variation at or below 10%). When comparing the performance of the IPDA in ex vivo CD4+ T cells from people with HIV on antiretroviral therapy, there was a strong correlation in the quantification of intact (rs = 0.93; p < 0.001) and 3' defective proviruses (rs = 0.96; p < 0.001) with a significant but less strong correlation for 5' defective proviruses (rs = 0.7; p = 0.04). We demonstrate that the dPCR platform enables sensitive and accurate quantification of genetically intact and defective proviruses similar to the ddPCR system but with greater speed and efficiency. This flexible system can be further optimized in the future, to detect up to 5 targets, enabling a more precise detection of intact and potentially replication-competent proviruses.

4.
Viruses ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37515292

RESUMO

In most people living with HIV (PLWH) on effective antiretroviral therapy (ART), cell-associated viral transcripts are readily detectable in CD4+ T cells despite the absence of viremia. Quantification of HIV RNA species provides insights into the transcriptional activity of proviruses that persist in cells and tissues throughout the body during ART ('HIV reservoir'). One such technique for HIV RNA quantitation, 'HIV transcription profiling', developed in the Yukl laboratory, measures a series of HIV RNA species using droplet digital PCR. To take advantage of advances in digital (d)PCR, we adapted the 'HIV transcription profiling' technique to Qiagen's dPCR platform (QIAcuity) and compared its performance to droplet digital (dd)PCR (Bio-Rad QX200 system). Using RNA standards, the two technologies were tested in parallel and assessed for multiple parameters including sensitivity, specificity, linearity, and intra- and inter-assay variability. The newly validated dPCR assays were then applied to samples from PLWH to determine HIV transcriptional activity relative to HIV reservoir size. We report that HIV transcriptional profiling was readily adapted to dPCR and assays performed similarly to ddPCR, with no differences in assay characteristics. We applied these assays in a cohort of 23 PLWH and found that HIV reservoir size, based on genetically intact proviral DNA, does not predict HIV transcriptional activity. In contrast, levels of total DNA correlated with levels of most HIV transcripts (initiated, proximally and distally elongated, unspliced, and completed, but not multiply spliced), suggesting that a considerable proportion of HIV transcripts likely originate from defective proviruses. These findings may have implications for measuring and assessing curative strategies and clinical trial outcomes.


Assuntos
Infecções por HIV , HIV-1 , Humanos , DNA Viral/genética , DNA Viral/análise , HIV-1/genética , Reação em Cadeia da Polimerase , Provírus/genética , Linfócitos T CD4-Positivos , RNA Viral/análise , Carga Viral/métodos
5.
J Virol ; 97(1): e0125422, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541802

RESUMO

Posttreatment controllers (PTCs) are rare HIV-infected individuals who can limit viral rebound after antiretroviral therapy interruption (ATI), but the mechanisms of this remain unclear. To investigate these mechanisms, we quantified various HIV RNA transcripts (via reverse transcription droplet digital PCR [RT-ddPCR]) and cellular transcriptomes (via RNA-seq) in blood cells from PTCs and noncontrollers (NCs) before and two time points after ATI. HIV transcription initiation did not significantly increase after ATI in PTCs or in NCs, whereas completed HIV transcripts increased at early ATI in both groups and multiply-spliced HIV transcripts increased only in NCs. Compared to NCs, PTCs showed lower levels of HIV DNA, more cell-associated HIV transcripts per total RNA at all times, no increase in multiply-spliced HIV RNA at early or late ATI, and a reduction in the ratio of completed/elongated HIV RNA after early ATI. NCs expressed higher levels of the IL-7 pathway before ATI and expressed higher levels of multiple cytokine, inflammation, HIV transcription, and cell death pathways after ATI. Compared to the baseline, the NCs upregulated interferon and cytokine (especially TNF) pathways during early and late ATI, whereas PTCs upregulated interferon and p53 pathways only at early ATI and downregulated gene translation during early and late ATI. In NCs, viral rebound after ATI is associated with increases in HIV transcriptional completion and splicing, rather than initiation. Differences in HIV and cellular transcription may contribute to posttreatment control, including an early limitation of spliced HIV RNA, a delayed reduction in completed HIV transcripts, and the differential expression of the IL-7, p53, and TNF pathways. IMPORTANCE The findings presented here provide new insights into how HIV and cellular gene expression change after stopping ART in both noncontrollers and posttreatment controllers. Posttreatment control is associated with an early ability to limit increases in multiply-spliced HIV RNA, a delayed (and presumably immune-mediated) ability to reverse an initial rise in processive/completed HIV transcripts, and multiple differences in cellular gene expression pathways. These differences may represent correlates or mechanisms of posttreatment control and may provide insight into the development and/or monitoring of therapeutic strategies that are aimed at a functional HIV cure.


Assuntos
Infecções por HIV , RNA Viral , Transcriptoma , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/genética , Interferons/genética , Interleucina-7/genética , RNA Viral/genética , Transcriptoma/imunologia , Proteína Supressora de Tumor p53/genética
6.
J Virol ; 96(24): e0160522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448806

RESUMO

Most of the HIV DNA in infected individuals is noninfectious because of deleterious mutations. However, it is unclear how much of the transcribed HIV RNA is potentially infectious or defective. To address this question, we developed and validated a novel intact viral RNA assay (IVRA) that uses droplet digital reverse transcriptase PCR (dd-RT-PCR) for the commonly mutated packaging signal (Psi) and Rev response element (RRE) regions (from the intact proviral DNA assay [IPDA]) to quantify likely intact (Psi+ RRE+), 3' defective (Psi+ RRE-), and 5' defective (Psi- RRE+) HIV RNA. We then applied the IPDA and IVRA to quantify intact and defective HIV DNA and RNA from peripheral CD4+ T cells from 9 antiretroviral therapy (ART)-suppressed individuals. Levels of 3' defective HIV DNA were not significantly different from those of 5' defective HIV DNA, and both were higher than intact HIV DNA. In contrast, 3' defective HIV RNA (median 86 copies/106 cells; 94% of HIV RNA) was much more abundant than 5' defective (2.1 copies/106 cells; 5.6%) or intact (0.6 copies/106 cells; <1%) HIV RNA. Likewise, the frequency of CD4+ T cells with 3' defective HIV RNA was greater than the frequency with 5' defective or intact HIV RNA. Intact HIV RNA was transcribed by a median of 0.018% of all proviruses and 2.2% of intact proviruses. The vast excess of 3' defective RNA over 5' defective or intact HIV RNA, which was not observed for HIV DNA, suggests that HIV transcription is completely blocked prior to the RRE in most cells with intact proviruses and/or that cells transcribing intact HIV RNA are cleared at very high rates. IMPORTANCE We developed a new assay that can distinguish and quantify intact (potentially infectious) as well as defective HIV RNA. In ART-treated individuals, we found that the vast majority of all HIV RNA is defective at the 3' end, possibly due to incomplete transcriptional processivity. Only a very small percentage of all HIV RNA is intact, and very few total or intact proviruses transcribe intact HIV RNA. Though rare, this intact HIV RNA is tremendously important because it is necessary to serve as the genome of infectious virions that allow transmission and spread, including rebound after stopping ART. Moreover, intact viral RNA may contribute disproportionately to the immune activation, inflammation, and organ damage observed with untreated and treated HIV infection. The intact viral RNA assay can be applied to many future studies aimed at better understanding HIV pathogenesis and barriers to HIV cure.


Assuntos
Infecções por HIV , HIV-1 , RNA Viral , Virologia , Humanos , HIV-1/genética , Provírus/genética , RNA Viral/genética , Virologia/métodos
7.
PLoS One ; 17(4): e0267402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476802

RESUMO

Although there have been great advancements in the field of HIV treatment and prevention, there is no cure. There are two types of HIV: HIV-1 and HIV-2. In addition to genetic differences between the two types of HIV, HIV-2 infection causes a slower disease progression, and the rate of new HIV-2 infections has dramatically decreased since 2003. Like HIV-1, HIV-2 is capable of establishing latent infection in CD4+ T cells, thereby allowing the virus to evade viral cytopathic effects and detection by the immune system. The mechanisms underlying HIV latency are not fully understood, rendering this a significant barrier to development of a cure. Using RT-ddPCR, we previously demonstrated that latent infection with HIV-1 may be due to blocks to HIV transcriptional elongation, distal transcription/polyadenylation, and multiple splicing. In this study, we describe the development of seven highly-specific RT-ddPCR assays for HIV-2 that can be applied to the study of HIV-2 infections and latency. We designed and validated seven assays targeting different HIV-2 RNA regions along the genome that can be used to measure the degree of progression through different blocks to HIV-2 transcription and splicing. Given that HIV-2 is vastly understudied relative to HIV-1 and that it can be considered a model of a less virulent infection, application of these assays to studies of HIV-2 latency may inform new therapies for HIV-2, HIV-1, and other retroviruses.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Infecção Latente , HIV-1/genética , HIV-2/genética , Humanos , Latência Viral/genética
8.
Methods ; 201: 15-25, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33882362

RESUMO

The replication of SARS-CoV-2 and other coronaviruses depends on transcription of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and multiple different subgenomic mRNAs (sgRNAs) encompassing fragments arising from discontinuous transcription. Recent studies have aimed to characterize the expression of subgenomic SARS-CoV-2 transcripts in order to investigate their clinical significance. Here, we describe a novel panel of reverse transcription droplet digital PCR (RT-ddPCR) assays designed to specifically quantify multiple different subgenomic SARS-CoV-2 transcripts and distinguish them from transcripts that do not arise from discontinuous transcription at each locus. These assays can be applied to samples from SARS-CoV-2 infected patients to better understand the regulation of SARS-CoV-2 transcription and how different sgRNAs may contribute to viral pathogenesis and clinical disease severity.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Viral/análise , RNA Viral/genética , Transcrição Reversa , SARS-CoV-2/genética
9.
J Virol Methods ; 292: 114115, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667568

RESUMO

A hallmark of coronavirus transcription is the generation of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and an array of subgenomic mRNAs (sgRNAs) encompassing sequences arising from discontinuous transcription. Existing PCR-based diagnostic assays for SAR-CoV-2 are qualitative or semi-quantitative and do not provide the resolution needed to assess the complex transcription dynamics of SARS-CoV-2 over the course of infection. We developed and validated a novel panel of sensitive, quantitative RT-ddPCR assays designed to target regions spanning the genome of SARS-CoV-2. Our assays target untranslated regions (5', 3') as well as different coding regions, including non-structural genes that are only found in full length (genomic) RNA and structural genes that are found in genomic as well as different subgenomic RNAs. Application of these assays to clinically relevant samples will enhance our understanding of SARS-CoV-2 gene expression and may also inform the development of improved diagnostic tools and therapeutics.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Reações Falso-Positivas , Humanos , Limite de Detecção , Fases de Leitura Aberta , Carga Viral
10.
bioRxiv ; 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33469579

RESUMO

The exact mechanism of coronavirus replication and transcription is not fully understood; however, a hallmark of coronavirus transcription is the generation of negative-sense RNA intermediates that serve as the templates for the synthesis of positive-sense genomic RNA (gRNA) and an array of subgenomic mRNAs (sgRNAs) encompassing sequences arising from discontinuous transcription. Existing PCR-based diagnostic assays for SAR-CoV-2 are qualitative or semi-quantitative and do not provide the resolution needed to assess the complex transcription dynamics of SARS-CoV-2 over the course of infection. We developed and validated a novel panel of specially designed SARS-CoV-2 ddPCR-based assays to map the viral transcription profile. Application of these assays to clinically relevant samples will enhance our understanding of SARS-CoV-2 replication and transcription and may also inform the development of improved diagnostic tools and therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA