Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38913108

RESUMO

PURPOSE: This study estimates the need of IVF/ICSI in Australia as compared to its actual uptake. METHODS: We created a model estimating for the annual demand for IVF/ICSI in a hypothetical infertile population, using demographic data from medical literature and Australian government databases. For each category of infertility (tubal, severe male, endometriosis, anovulation and unexplained), our estimated need for IVF/ICSI was compared to the actual IVF/ICSI uptake (ANZARD 2019). The model consisted of three categories depending on couples' cause of infertility, i.e. couples with absolute indications for IVF/ICSI (couples with severe male factor infertility and tubal obstruction); couples with anovulatory infertility (couples with ovulation disorders) and couples with ovulatory infertility (couples suffering from unexplained infertility and endometriosis). The model was applied to each of these categories to determine the number of couples that would require IVF/ICSI treatment after failing to conceive naturally or after following alternative treatment plans. The main outcomes of this study were the estimate of IVF/ICSI cycles and the difference between the estimate and the reported number of IVF/ICSI cycles (2019 ANZARD report). RESULTS: We estimated that approximately 35,300 couples required IVF/ICSI treatment in Australia in 2019, while in 2019 according to ANZARD, 46,000 couples underwent IVF/ICSI. A higher uptake of IVF/ICSI cycles than expected was specifically reported in couples with unexplained infertility, ovulation disorders and endometriosis, while for tubal and severe male infertility uptake seemed adequate. CONCLUSION: In Australia, there seems to be overservicing of IVF/ICSI, specifically for unexplained, ovulatory and endometriosis-related infertility.

2.
Animals (Basel) ; 12(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35327190

RESUMO

Freshwater fish populations are declining with many small, Australian fish species at risk of extinction within the next twenty-years. Cryopreservation of reproductive cells and tissues makes it possible to reproduce individuals from a species even after they are extinct in the wild. We describe the successful cryopreservation of ovarian tissue in the Murray River Rainbowfish, Melanotaenia fluviatilis (Order: Atheriniformes). Histology showed that oogonia are 13.70 µm ± 1.75 µm in size, stain positive for germ-line marker Vasa, and represent approximately 2.29 ± 0.81% of cells in the ovary. Flow cytometry was used to analyse ovarian cell suspensions, requiring an optimised tissue digestion protocol. We found that 0.25% trypsin with 1.13 mM EDTA produced cell suspensions with the highest viability (76.28 ± 4.64%) and the highest number of cells recovered per gram of tissue (1.2 × 108 ± 4.4 × 107 cells/g). Subsequent sorting of ovarian cell suspensions by flow cytometry increased oogonial cells in suspension from 2.53 ± 1.31% in an unsorted sample to 5.85 ± 4.01% in a sorted sample (p = 0.0346). Cryopreservation of ovarian tissue showed DMSO-treated samples had higher cell viability post-thaw (63.5 ± 18.2%) which was comparable to fresh samples (82.5 ± 7.1%; p = 0.36). Tissue cryopreserved in 2.0 M DMSO had the highest cell viability overall (76.07 ± 3.89%). This protocol could be applied to bio-banking programs for other species in the Melanotaeniidae, and perhaps species in other families and orders of Australian fish.

3.
Curr Top Dev Biol ; 147: 659-707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337466

RESUMO

Although certain organisms are chosen and employed to better understand a specific problem in biology (so-called model organisms), sometimes an animal model reveals its' biomedical importance by happenstance. In many ways, the advent of spiny mice (Acomys) as an emerging model to study regeneration and menstruation stands as a case study in scientific pseudoserendipity (Diaz de Chumaceiro, 1995). As we recount in this chapter, the discovery of these phenotypes, while not entirely accidental, was nonetheless unexpected. In addition to recounting how we uncovered these unusual mammalian traits, we outline recent work by our groups and others that has begun to outline the cellular and genetic mechanisms underlying bonafide mammalian tissue regeneration and a human-like mode of reproduction in spiny mice.


Assuntos
Murinae , Reprodução , Animais , Feminino , Modelos Animais , Murinae/genética , Reprodução/genética , Cicatrização
4.
BMC Zool ; 7(1): 13, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-37170145

RESUMO

BACKGROUND: The Egyptian spiny mouse (Acomys cahirinus) is the only known rodent to exhibit true, human-like menstruation and postpartum ovulation, and is an important new model for reproductive studies. Spiny mice do not produce a visible copulatory plug, and calculation of gestational age is therefore restricted by the need to use mated postpartum dams. The current inefficient method of monitoring until parturition to provide a subsequent estimate of gestational age increases study duration and costs. This study addressed this issue by comparing the mating behaviour of spiny mice across the menstrual cycle and proposes a more accurate method for staging and pairing animals that provides reliable estimates of gestational age. In experiment 1, mating behaviour was recorded overnight to collect data on mounting, intromission, and ejaculation (n = 5 pairs per stage) in spiny mice paired at menses and at early and late follicular and luteal phases of the menstrual cycle. In experiment 2, female spiny mice were paired at the follicular or luteal phases of the menstrual cycle to determine any effect on the pairing-birth interval (n = 10 pairs). RESULTS: We report a broad mating window of ~ 3 days during the follicular phase and early luteal phase of spiny mice. Males displayed a discrete 'foot twitch' behaviour during intromission and a brief copulatory lock during ejaculation. Litters were delivered after 40-43 days if pairing occurred during the mating window, compared with 46-48 days for spiny mice paired in the late luteal phase. When pairing occurred during the late luteal phase or menses no mating activity was observed during the recording period. CONCLUSION: This study clearly demonstrates an effect of the menstrual cycle on mating behaviour and pregnancy in the spiny mouse and provides a reliable and more effective protocol for estimating gestational age without the need for postpartum dams.

5.
Hum Reprod ; 36(12): 3083-3094, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34601586

RESUMO

STUDY QUESTION: Does the naturally menstruating spiny mouse go through menopause? SUMMARY ANSWER: Our study is the first to show a natural and gradual menopausal transition in a rodent. WHAT IS KNOWN ALREADY: Age-related depletion of the human ovarian reserve (OvR) leads to menopause, the permanent cessation of menstruation and reproduction. Current rodent models of menopause are inappropriate for inferences of the human condition, as reproductive senescence is abrupt or induced through ovariectomy. The spiny mouse is the only confirmed rodent with a naturally occurring menstrual cycle. STUDY DESIGN, SIZE, DURATION: Histological assessment of virgin spiny mice occurred in females aged 6 months (n = 14), 1 year (n = 7), 2 years (n = 13), 3 years (n = 9) and 4 years (n = 9). Endocrinology was assessed in a further 9 females per age group. Five animals per group were used for ovarian stereology with additional ovaries collected at prenatal Day 35 (n = 3), day of birth (n = 5), postnatal Days 35 (n = 5) and 100 (n = 5) and 15 months (n = 5). PARTICIPANTS/MATERIALS, SETTING, METHODS: Morphological changes in the reproductive system were examined using hematoxylin and eosin stains. Proliferating cell nuclear antigen immunohistochemistry assessed endometrial proliferation and sex steroids estradiol and testosterone were assayed using commercial ELISA kits. MAIN RESULTS AND THE ROLE OF CHANCE: The proportion of females actively cycling was 86% at 6 months, 71% at 1 year, 69% at 2 years, 56% at 3 years and 44% at 4 years. Uterine and ovarian weights declined steadily from 1 year in all groups and corresponded with loss of uterine proliferation (P < 0.01). Estradiol was significantly decreased at 1 and 2 years compared to 6-month-old females, before becoming erratic at 3 and 4 years, with no changes in testosterone across any age. Fully formed primordial follicles were observed in prenatal ovaries. Aging impacted on both OvR and growing follicle numbers (P < 0.001-0.0001). After the age of 3 years, the follicle decline rate increased more than 5-fold. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This is a descriptive study in a novel research rodent whereby reagents validated for use in the spiny mouse were limited. WIDER IMPLICATIONS OF THE FINDINGS: The gradual, rather than sudden, menopausal transition suggests that the spiny mouse is a more appropriate perimenopausal model than the current rodent models in which to examine the neuroendocrine pathways that encompass all hormonal interactions in the hypothalamic-pituitary-gonadal axis. The logistic, ethical and economic advantages of such a model may reduce our reliance on primates in menopause research and enable more thorough and invasive investigation than is possible in humans. STUDY FUNDING/COMPETING INTEREST(S): Hudson Institute is supported by the Victorian State Government Operational Infrastructure Scheme. The authors declare no competing interests.


Assuntos
Menopausa , Menstruação , Envelhecimento , Animais , Feminino , Menstruação/metabolismo , Murinae , Gravidez , Reprodução
6.
Sci Rep ; 11(1): 5344, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674629

RESUMO

Egyptian spiny mice are the only known species to have human-like menstruation and a postpartum ovulation. Unfortunately, no endocrine or morphological evidence has been provided for a postpartum ovulation in spiny mice, and while later stages of pregnancy have been well studied, early events including embryo implantation and spiral artery remodelling have not been reported. This study compared the sex steroid endocrinology and reproductive tract morphology of dams at eight timepoints (n = 40) postpartum to determine the timing of ovulation and the timing and invasiveness of embryo implantation in A. cahirinus. Reproductive tracts were fixed and stained for histology and immunohistochemistry, and plasma was prepared for enzyme-linked immunosorbent assay. Ovarian histology and estradiol-17B concentrations indicate ovulation within 48 h of parturition and then immediate resumption of follicular growth. Uterine histology and immunohistochemistry revealed progressive epithelial repair, endometrial growth and spiral artery assembly and remodelling in dams postpartum. Blastocysts were seen in the uterine lumen at day 4-5 postpartum and embryos had implanted superficially with minimal stromal invasion by day 5-6. This study provides further evidence for the unique, humanesque reproductive biology of spiny mice and for a postpartum ovulation using endocrine and morphological changes observed during early pregnancy. Taken together, our data suggest that spiny mice may act as appropriate models of human pregnancy disorders such as implantation failure or pre-eclampsia.


Assuntos
Modelos Animais de Doenças , Menstruação , Murinae/psicologia , Ovulação , Pré-Eclâmpsia/patologia , Animais , Feminino , Período Pós-Parto , Gravidez
7.
Front Reprod Health ; 3: 784578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303981

RESUMO

Menstruation, the cyclical breakdown of the uterine lining, is arguably one of evolution's most mysterious reproductive strategies. The complexity and rarity of menstruation within the animal kingdom is undoubtedly a leading contributor to our current lack of understanding about menstrual function and disorders. In particular, the molecular and environmental mechanisms that drive menstrual and fertility dysregulation remain ambiguous, owing to the restricted opportunities to study menstruation and model menstrual disorders in species outside the primates. The recent discovery of naturally occurring menstruation in the Egyptian spiny mouse (Acomys cahirinus) offers a new laboratory model with significant benefits for prospective research in women's health. This review summarises current knowledge of spiny mouse menstruation, with an emphasis on spiral artery formation, inflammation and endocrinology. We offer a new perspective on cycle variation in menstrual bleeding between individual animals, and propose that this is indicative of fertility success. We discuss how we can harness our knowledge of the unique physiology of the spiny mouse to better understand vascular remodelling and its implications for successful implantation, placentation, and foetal development. Our research suggests that the spiny mouse has the potential as a translational research model to bridge the gap between bench to bedside and provide improved reproductive health outcomes for women.

8.
J Assist Reprod Genet ; 38(1): 55-69, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33067741

RESUMO

PURPOSE: Oocyte quality and reproductive outcome are negatively affected by advanced maternal age, ovarian stimulation and method of oocyte maturation during assisted reproduction; however, the mechanisms responsible for these associations are not fully understood. The aim of this study was to compare the effects of ageing, ovarian stimulation and in-vitro maturation on the relative levels of transcript abundance of genes associated with DNA repair during the transition of germinal vesicle (GV) to metaphase II (MII) stages of oocyte development. METHODS: The relative levels of transcript abundance of 90 DNA repair-associated genes was compared in GV-stage and MII-stage oocytes from unstimulated and hormone-stimulated ovaries from young (5-8-week-old) and old (42-45-week-old) C57BL6 mice. Ovarian stimulation was conducted using pregnant mare serum gonadotropin (PMSG) or anti-inhibin serum (AIS). DNA damage response was quantified by immunolabeling of the phosphorylated histone variant H2AX (γH2AX). RESULTS: The relative transcript abundance in DNA repair genes was significantly lower in MII oocytes compared to GV oocytes in young unstimulated and PMSG stimulated but was higher in AIS-stimulated mice. Interestingly, an increase in the relative level of transcript abundance of DNA repair genes was observed in MII oocytes from older mice in unstimulated, PMSG-stimulated and AIS-stimulated mice. Decreased γH2AX levels were found in both GV oocytes (82.9%) and MII oocytes (37.5%) during ageing in both ovarian stimulation types used (PMSG/AIS; p < 0.05). CONCLUSIONS: In conclusion, DNA repair relative levels of transcript abundance are altered by maternal age and the method of ovarian stimulation during the GV-MII transition in oocytes.


Assuntos
Dano ao DNA/efeitos dos fármacos , Histonas/genética , Oócitos/crescimento & desenvolvimento , Oogênese/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Envelhecimento/patologia , Animais , Reparo do DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gonadotropinas Equinas/farmacologia , Humanos , Inibinas/farmacologia , Metáfase/genética , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Indução da Ovulação/métodos , Gravidez
9.
Exp Dermatol ; 30(3): 402-408, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33119185

RESUMO

Keloids are benign tumours caused by abnormal wound healing driven by increased expression of cytokines, including activin A. This study compared effects of activins on normal and keloid-derived human dermal fibroblasts and investigated a novel treatment for keloids using follistatin. Normal skin and keloid tissue samples from 11 patients were used to develop primary fibroblast cultures, which were compared in terms of their histology and relevant gene (qRT-PCR and RNAseq) and protein (ELISA) expression. Activin A (INHBA) and connective tissue growth factor (CTGF) gene expression were significantly upregulated in keloid fibroblasts, as was activin A protein expression in cell lysates and culture medium. Activator protein 1 inhibitor (SR11302) significantly decreased INHBA and CTGF expression in keloid fibroblasts and a single treatment of follistatin over 5 days significantly inhibited activin and various matrix-related genes in keloid fibroblasts when compared to controls. Follistatin, by binding activin A, suppressed CTGF expression suggesting a novel therapeutic role in managing keloids and perhaps other fibrotic diseases.


Assuntos
Folistatina/farmacologia , Expressão Gênica/efeitos dos fármacos , Subunidades beta de Inibinas/antagonistas & inibidores , Queloide/genética , Queloide/metabolismo , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Elastina/genética , Elastina/metabolismo , Fibroblastos , Humanos , Subunidades beta de Inibinas/genética , Subunidades beta de Inibinas/metabolismo , Subunidades beta de Inibinas/farmacologia , Interleucina-6/genética , Queloide/tratamento farmacológico , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Retinoides/farmacologia , Regulação para Cima
10.
PLoS One ; 15(12): e0244411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370773

RESUMO

The Egyptian or Common spiny mouse (A. cahirinus) is the first rodent species to show human-like menstruation and spontaneous decidualisation. We consider from these, and its other, human-like characteristics that this species will be a more useful and appropriate small animal model for human reproductive studies. Based on this, there is a need to develop specific laboratory-based assisted reproduction protocols including superovulation, in-vitro fertilisation, embryo cryopreservation and transfer to expand and make this model more relevant. Because standard rodent superovulation has not been successful in the spiny mouse, we have selected to test a human protocol. Female spiny mice will receive a subcutaneous GnRH agonist implant and be allowed to recover. Menstrual cycle lengths will then be allowed to stabilize prior to ovarian stimulation. After recovery, females will be injected IP once a day for 4 days with a FSH analogue, to induce follicular growth, and on day 5 will be injected IP with a hCG analogue to trigger ovulation. Females will either be culled 36hrs after trigger to collect oocytes or immediately paired with a stud male and two cell embryos collected 48hrs later. Mature oocytes will be inseminated using fresh spiny mouse spermatozoa and all in-vitro grown and in-vivo collected two cell embryos will be cryopreserved using methods developed in a close spiny mouse relative, the Mongolian gerbil. For embryo transfer, vitrified embryos will be rapidly warmed and non-surgically transferred to surrogate mice. Surrogates will be monitored until pregnancy is apparent (roughly 30 days) and then left undisturbed until birth, 38-40 days after transfer. By successfully developing robust assisted reproduction protocols in A. cahirinus we will be able to use this rodent as a more effective model for human reproduction.


Assuntos
Gonadotropina Coriônica/análogos & derivados , Criopreservação/métodos , Embrião de Mamíferos , Hormônio Foliculoestimulante/análogos & derivados , Hormônio Liberador de Gonadotropina/agonistas , Indução da Ovulação/métodos , Animais , Ciclo Estral , Feminino , Fertilização in vitro , Injeções Intraperitoneais , Masculino , Camundongos , Modelos Animais , Superovulação
11.
Sci Rep ; 10(1): 19355, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168894

RESUMO

Globally, fish populations are in decline from overfishing, habitat destruction and poor water quality. Recent mass fish deaths in Australia's Murray-Darling Basin highlight the need for improved conservation methods for endangered fish species. Cryopreservation of testicular tissue allows storage of early sperm precursor cells for use in generating new individuals via surrogacy. We describe successful isolation and cryopreservation of spermatogonia in an Australian rainbowfish. Testis histology showed rainbowfish spermatogonia are large (> 10 µm) and stain positive for Vasa, an early germ line-specific protein. Using size-based flow cytometry, testis cell suspensions were sorted through "A" (> 9 µm) and "B" gates (2-5 µm); the A gate produced significantly more Vasa-positive cells (45.0% ± 15.2%) than the "B" gate (0.0% ± 0.0%) and an unsorted control (22.9% ± 9.5%, p < 0.0001). The most successful cryoprotectant for "large cell" (> 9 µm) viability (72.6% ± 10.5%) comprised 1.3 M DMSO, 0.1 M trehalose and 1.5% BSA; cell viability was similar to fresh controls (78.8% ± 10.5%) and significantly better than other cryoprotectants (p < 0.0006). We have developed a protocol to cryopreserve rainbowfish testicular tissue and recover an enriched population of viable spermatogonia. This is the first step in developing a biobank of reproductive tissues for this family, and other Australian fish species, in the Australian Frozen Zoo.


Assuntos
Conservação dos Recursos Naturais , Criopreservação/métodos , Peixes/fisiologia , Testículo/patologia , Animais , Austrália , Crioprotetores , Pesqueiros , Citometria de Fluxo , Congelamento , Masculino , Rios , Espermatogênese , Espermatogônias/metabolismo , Espermatozoides/metabolismo , Vitelogeninas/metabolismo
12.
Reprod Fertil Dev ; 32(16): 1293-1297, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32943139

RESUMO

The menstruating Egyptian spiny mouse has recently been proposed as a new animal model for reproductive health research. Unfortunately, little is known about reproduction in males. This study compared several characteristics of sperm function before and after cryopreservation. Epididymal spermatozoa were cryopreserved in different concentrations of raffinose and skim milk and tested for motility and membrane integrity (Experiment 1). Further evaluations of motility, plasma membrane and acrosome integrity, mitochondrial membrane potential and DNA integrity were conducted with the addition of l-glutamine to the extender (Experiment 2). The results show that, following cryopreservation, motility and membrane integrity were reduced, but were better maintained in the presence of l-glutamine (P<0.05). Moreover, although all sperm parameters were significantly reduced following cryopreservation (P<0.05), most cryopreserved spermatozoa retained acrosome, membrane and DNA integrity while also maintaining motility and mitochondrial membrane potential. This study provides a new step towards the development of assisted reproductive techniques and archiving the important genetics of the world's only known menstruating rodent.


Assuntos
Criopreservação/veterinária , Preservação do Sêmen/veterinária , Espermatozoides/citologia , Animais , Crioprotetores , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Murinae , Análise do Sêmen , Motilidade dos Espermatozoides/fisiologia
13.
Reprod Fertil Dev ; 32(9): 807-821, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32527372

RESUMO

Fish populations continue to decline globally, signalling the need for new initiatives to conserve endangered species. Over the past two decades, with advances in our understanding of fish germ line biology, new exsitu management strategies for fish genetics and reproduction have focused on the use of germ line cells. The development of germ cell transplantation techniques for the purposes of propagating fish species, most commonly farmed species such as salmonids, has been gaining interest among conservation scientists as a means of regenerating endangered species. Previously, exsitu conservation methods in fish have been restricted to the cryopreservation of gametes or maintaining captive breeding colonies, both of which face significant challenges that have restricted their widespread implementation. However, advances in germ cell transplantation techniques have made its application in endangered species tangible. Using this approach, it is possible to preserve the genetics of fish species at any stage in their reproductive cycle regardless of sexual maturity or the limitations of brief annual spawning periods. Combining cryopreservation and germ cell transplantation will greatly expand our ability to preserve functional genetic samples from threatened species, to secure fish biodiversity and to produce new individuals to enhance or restore native populations.


Assuntos
Aquicultura , Criopreservação/veterinária , Espécies em Perigo de Extinção , Peixes/fisiologia , Células Germinativas/transplante , Reprodução , Técnicas de Reprodução Assistida/veterinária , Animais , Feminino , Peixes/genética , Masculino , Densidade Demográfica
14.
Reprod Fertil Dev ; 32(4): 363-372, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31839110

RESUMO

The menstruating spiny mouse is the first rodent identified to exhibit natural spontaneous decidualisation, cyclical endometrial shedding and regeneration. While the spiny mouse shares several primate-like characteristics in its reproductive biology, it has not been established whether pseudopregnancy can be induced or if its cycles can be synchronised as in non-human mammals. Here we describe attempts to induce pseudopregnancy and synchronisation of menstrual cycles (i.e. Whitten effect) in spiny mice. Virgin females (n=3-8 per group) underwent one of the following procedures to induce pseudopregnancy: daily vaginal lavage only (control), progesterone injection, mechanical stimulation of the cervix and sterile mating. A separate cohort was also exposed to male-soiled bedding to assess the Whitten effect. Pseudopregnancy was deemed successful if females presented with extended (>12 consecutive days) leukocytic vaginal cytology. No female from any method of induction met this criterion. In addition, the menstrual cycles of a group of six females could not be synchronised, nor immediate ovulation induced via exposure to male-soiled bedding. These responses indicate that the spiny mouse does not behave as a typical rodent. Like higher-order primates, the spiny mouse exhibits a relatively rare reproductive strategy, of failure to show pseudopregnancy or cyclical synchronisation. This is further endorsement of the use of this species as a versatile animal model for translational studies of menstruation and fertility.


Assuntos
Endométrio/fisiologia , Ciclo Menstrual , Ovulação , Pseudogravidez/fisiopatologia , Reprodução , Animais , Endométrio/efeitos dos fármacos , Feminino , Masculino , Ciclo Menstrual/efeitos dos fármacos , Murinae , Ovulação/efeitos dos fármacos , Periodicidade , Estimulação Física , Gravidez , Progesterona/administração & dosagem , Pseudogravidez/etiologia , Reprodução/efeitos dos fármacos , Especificidade da Espécie , Vasectomia
15.
J Mammal ; 100(2): 308-327, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31043761

RESUMO

The platypus (Ornithorhynchus anatinus) is one of the world's most evolutionarily distinct mammals, one of five extant species of egg-laying mammals, and the only living species within the family Ornithorhynchidae. Modern platypuses are endemic to eastern mainland Australia, Tasmania, and adjacent King Island, with a small introduced population on Kangaroo Island, South Australia, and are widely distributed in permanent river systems from tropical to alpine environments. Accumulating knowledge and technological advancements have provided insights into many aspects of its evolutionary history and biology but have also raised concern about significant knowledge gaps surrounding distribution, population sizes, and trends. The platypus' distribution coincides with many of Australia's major threatening processes, including highly regulated and disrupted rivers, intensive habitat destruction, and fragmentation, and they were extensively hunted for their fur until the early 20th century. Emerging evidence of local population declines and extinctions identifies that ecological thresholds have been crossed in some populations and, if threats are not addressed, the species will continue to decline. In 2016, the IUCN Red Listing for the platypus was elevated to "Near Threatened," but the platypus remains unlisted on threatened species schedules of any Australian state, apart from South Australia, or nationally. In this synthesis, we review the evolutionary history, genetics, biology, and ecology of this extraordinary mammal and highlight prevailing threats. We also outline future research directions and challenges that need to be met to help conserve the species.

16.
Sci Rep ; 9(1): 6694, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040316

RESUMO

Many women suffer from either failed fertilisation or their embryos arrest early during development. Autologous mitochondrial supplementation has been proposed as an assisted reproductive technology to overcome these problems. However, its safety remains to be tested in an animal model to determine if there are transgenerational effects. We have supplemented oocytes with autologous populations of mitochondria to generate founders. We mated the female founders and their offspring to produce three generations. We assessed litter size, the ovarian reserve, and weight gain and conducted a full histopathological analysis from each of the three generations. Across the generations, we observed significant increases in litter size and in the number of primordial follicles in the ovary matched by changes in global gene expression patterns for these early-stage oocytes. However, full histopathological analysis revealed that cardiac structure was compromised in first and second generation offspring, which could seriously affect the health of the offspring. Furthermore, the offspring were prone to increased weight gain during early life. Mitochondrial supplementation appears to perturb the regulation of the chromosomal genome resulting in transgenerational phenotypic gains and losses. These data highlight the need for caution when using autologous mitochondrial supplementation to treat female factor infertility.


Assuntos
Mitocôndrias , Miocárdio/patologia , Oócitos/fisiologia , Técnicas de Reprodução Assistida , Animais , Animais Recém-Nascidos , Peso Corporal , Implantação do Embrião , Feminino , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos Endogâmicos C57BL , Oogênese/genética , Reserva Ovariana/fisiologia , Gravidez , Técnicas de Reprodução Assistida/efeitos adversos , Injeções de Esperma Intracitoplásmicas , Superovulação
17.
Zygote ; 27(1): 36-45, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30523777

RESUMO

SummaryMouse and lamb oocytes were vitrified with, or exposed to, different cryoprotectants and evaluated for their effects on their survival and developmental competence after in vitro fertilization (IVF) and activation treatments. Control oocytes remained untreated, whilst the remainder were exposed to three different combinations of vitrification solutions [dimethyl sulfoxide (DMSO) + ethylene glycol (EG), EG only, or propanediol (PROH) + EG] and either vitrified or left unfrozen (exposed groups). Oocytes in the control and vitrified groups underwent IVF and developmental competence was assessed to the blastocyst stage. In lambs, survival rate in vitrified oocytes was significantly lower than for oocytes in the exposed groups (P <0.05). Blastocyst development was low in vitrified oocytes compared with controls (<6% vs 38.9%, P <0.01). Parthenogenetic activation was more prevalent in vitrified lamb oocytes compared with controls (P <0.05). No evidence of zona pellucida hardening or cortical granule exocytosis could account for reduced fertilization rates in vitrified lamb oocytes. Mouse oocytes demonstrated a completely different response to lamb oocytes, with survival and parthenogenetic activation rates unaffected by the vitrification process. Treatment of mouse oocytes with DMSO + EG yielded significantly higher survival and cleavage rates than treatment with PROH + EG (87.8% and 51.7% vs 32.7% and 16.7% respectively, P <0.01), however cleavage rate for vitrified oocytes remained lower than for the controls (51.7% vs 91.7%, P <0.01) as did mean blastocyst cell number (33 ± 3.1 vs 42 ± 1.5, P <0.05). From this study, it is clear that lamb and mouse show different tolerances to cryoprotectants commonly used in vitrification procedures, and careful selection and testing of species-compatible cryoprotectants is required when vitrifying oocytes to optimize survival and embryo development.


Assuntos
Crioprotetores/farmacologia , Oócitos/efeitos dos fármacos , Vitrificação/efeitos dos fármacos , Animais , Sobrevivência Celular , Exocitose , Feminino , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Masculino , Camundongos Endogâmicos CBA , Oócitos/citologia , Oócitos/fisiologia , Partenogênese/efeitos dos fármacos , Ovinos
18.
Hum Reprod ; 34(2): 308-322, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561655

RESUMO

STUDY QUESTION: Does the newly discovered menstruating spiny mouse exhibit behavioural and metabolic changes in correlation with premenstrual phases of the menstrual cycle? SUMMARY ANSWER: This is the first report of cycle variability in the exploratory and interactive behaviour, and food consumption in menstruating spiny mice, and demonstrates that physiological changes are also dependent on within-subject variation. WHAT IS KNOWN ALREADY: Premenstrual syndrome (PMS) is a prominent cyclic disorder that affects millions of women worldwide. More than 70% of women endure symptoms of impending menstruation, such as bloating, abdominal cramping and nausea to some degree. Consequently, ~8% of women experience recurrent physical and emotional symptoms which are extreme enough to disrupt daily life and seek intervention. Due to a lack of an appropriate animal model, the mechanisms underlying PMS are poorly understood, and subsequently, effective treatments are limited. STUDY DESIGN, SIZE, DURATION: This study analyses the changes in behavioural responses to the investigator during vaginal lavage (n = 14), exploratory behaviour (n = 11) and metabolism (n = 20) across the menstrual cycle in the spiny mouse (Acomys cahirinus). PARTICIPANTS/MATERIALS, SETTING, METHODS: We performed vaginal lavages on virgin spiny mice (6-8 months of age) and subjected each cohort of females to repeated measures for vaginal lavage, exploratory behaviour and metabolism. Stages of the menstrual cycle were designated as early follicular, late follicular, early luteal, late luteal, early menstrual and late menstrual, with the late luteal and early menstrual phases considered as premenstrual phases and analysed using generalized estimating equations. For vaginal lavage, the behavioural responses to researcher handling were scored on an increasing scale of severity during the lavage process (e.g. restraint, frequency of vocalizations, total handling time). For exploratory behaviour, exploration, memory and sociability were assessed through subjection to Open Field (OF), Novel Object Recognition (NORT), Social Novelty (SN) and Elevated Plus Maze (EPM) tests. For metabolism, physiological changes were measured over a 24-h period in metabolic cages. Results are mean ± SD with statistical significance set to P < 0.05. MAIN RESULTS AND THE ROLE OF CHANCE: Qualitative behavioural assessment showed that compared to early follicular controls, during premenstrual phases, cycling females had significantly increased probability of: manifesting difficulties during restraint (4×, P < 0.01), vocalizing (8×, P < 0.01) and exhibiting isolation in the cage (40×, P = 0.041). We saw significant increases in handling time during the premenstrual phase in cycling females (76 ± 16 s) compared to controls (55 ± 7 s, P < 0.001). For exploratory behaviour, cycling females in their early menstrual phase travelled significantly less distance in the outer zone of the OF arena (13.3 ± 9.0 m) than females in their early luteal phase (22.3 ± 9.9 m, P = 0.038) and at significantly reduced velocities (40.2 ± 10.5 mm/s and 78.8 ± 31.0 mm/s, respectively, P = 0.006). These females also had fewer entries into the EPM open arms during the same phases (9.6 ± 6.1 and versus 20.0 ± 7.2, respectively, P = 0.030) and travelled less distance (3.2 ± 2.8 m versus 7.0 ± 5.5 m, respectively, P = 0.026). No differences were observed in NORT or SN across the cycle. In the metabolism studies, spiny mice demonstrated a significant increase in food consumption (percentage of body weight) during the early follicular and late luteal phases (3.9 ± 2.4% and 3.8 ± 2.1%, respectively) compared to the late follicular phase (2.3 ± 2.6%, P = 0.015). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This is an observational study to determine fundamental changes in behaviour and metabolism in a novel species, and as such, lacks commercially available laboratory reagents and protocols specific to the spiny mouse. WIDER IMPLICATIONS OF THE FINDINGS: The timing of these behavioural and physiological changes suggests that spiny mice exhibit symptoms analogous to PMS in higher order primates, thus providing a pre-clinical model for testing novel interventions to alleviate premenstrual symptoms and overcoming many limitations associated with this research area. STUDY FUNDING/COMPETING INTEREST(S): N.B. is supported by a Research Training Program stipend through Monash University. J.E. is supported by a Fellowship awarded by the Peter Fielding Foundation. The Hudson Institute of Medical Research is supported by the Victorian Government Operational Research Infrastructure Support. The authors declare no conflicts of interest.


Assuntos
Ingestão de Alimentos/fisiologia , Comportamento Exploratório/fisiologia , Ciclo Menstrual/fisiologia , Síndrome Pré-Menstrual/fisiopatologia , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/fisiologia , Variação Biológica da População , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Síndrome Pré-Menstrual/diagnóstico
19.
Hum Reprod ; 33(9): 1715-1726, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30032205

RESUMO

STUDY QUESTION: Is the newly discovered menstruating rodent, the spiny mouse, a valid model for studying endometrial morphology and menstruation? SUMMARY ANSWER: Our study is the first to demonstrate a primate-like pattern of natural menstruation in a rodent, with decidualization, spiral arteriole remodeling and piece-meal endometrial shedding. WHAT IS KNOWN ALREADY: The spiny mouse has a naturally occurring menstrual cycle. This unique feature has the potential to reduce the heavy reliance on primates and provide a more appropriate small animal model for menstrual physiology research. STUDY DESIGN, SIZE, DURATION: This study compares morphological changes in the endometrium during early, mid and late menstruation of the spiny mouse (n = 39), human (n = 9) and the induced mouse model of menstruation (n = 17). PARTICIPANTS/MATERIALS, SETTING, METHODS: We assessed tissue morphology with hematoxylin and eosin and erythrocyte patterns with Mallory's trichrome. We conducted staining for neutrophil gelatinase associated lipocalin (NGAL), cytokeratin and interleukin-11 (IL-11) in all species. We used double immunofluorescence staining for vascular endothelial growth factor and alpha-smooth muscle actin to detect vasculature remodeling and western immunoblot to detect interleukin-8 (IL-8) and macrophage migration inhibitory factor (MIF) in the menstrual fluid of spiny mice. MAIN RESULTS AND THE ROLE OF CHANCE: Menstruation occurs in the spiny mouse over a 72-h period, with heaviest menstrual breakdown occurring 24 h after initial observation of red blood cells in the vaginal cytology. During menstruation, the endometrium of the spiny mouse appeared to resemble human menstrual shedding with focal epithelial breakdown observed in conjunction with lysis of underlying stroma and detection of IL-8 and MIF in menstrual fluid. The mouse exhibits extensive decidualization prior to induced menses, with transformation of the entire uterine horn and cytokeratin expression absent until initiation of repair. Decidualization occurred spontaneously and was less marked in the spiny mouse, where epithelial integrity remained intact. In all species, the decidua was positive for IL-11 secretion and neutrophil recruitment was similar in each. Spiral arteriole formation was confirmed in the spiny mouse. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This is a descriptive study comparing primarily morphological traits between the spiny mouse, the mouse and the human. Reagents specific to the spiny mouse were limited and resources for global use of this novel species are few. WIDER IMPLICATIONS OF THE FINDINGS: Our work supports the spiny mouse as a viable model, sharing many attributes of physiological menstruation with humans. The strength of a natural as opposed to an artificial model is validated through the striking similarities observed between the spiny mouse and human in uterine breakdown. The spiny mouse may be highly useful in large-scale investigations of menstruation and menstrual disorders. STUDY FUNDING/COMPETING INTEREST(S): N.B. and S.R. are each recipients of a Research Training Program scholarship supported by Monash University. This work was supported by the Victorian Government Operational Infrastructure and laboratory funds to H.D. The authors declare no competing interests.


Assuntos
Decídua/metabolismo , Menstruação/metabolismo , Murinae , Animais , Western Blotting , Decídua/citologia , Feminino , Humanos , Fatores Inibidores da Migração de Macrófagos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fator A de Crescimento do Endotélio Vascular/sangue
20.
J Mol Endocrinol ; 61(1): R25-R41, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29789322

RESUMO

We recently discovered the first known menstruating rodent. With the exception of four bats and the elephant shrew, the common spiny mouse (Acomys cahirinus) is the only species outside the primate order to exhibit menses. There are few widely accepted theories on why menstruation developed as the preferred reproductive strategy of these select mammals, all of which reference the evolution of spontaneous decidualisation prior to menstrual shedding. Though menstruating species share several reproductive traits, there has been no identifiable feature unique to menstruating species. Such a feature might suggest why spontaneous decidualisation, and thus menstruation, evolved in these species. We propose that a ≥3-fold increase in progesterone during the luteal phase of the reproductive cycle is a unique characteristic linking menstruating species. We discuss spontaneous decidualisation as a consequence of high progesterone, and the potential role of prolactin in screening for defective embryos in these species to aid in minimising implantation of abnormal embryos. We further explore the possible impact of nutrition in selecting species to undergo spontaneous decidualisation and subsequent menstruation. We summarise the current knowledge of menstruation, discuss current pre-clinical models of menstruation and how the spiny mouse may benefit advancing our understanding of this rare biological phenomenon.


Assuntos
Menstruação/fisiologia , Animais , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Estradiol/metabolismo , Feminino , Humanos , Menstruação/metabolismo , Camundongos , Progesterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA