Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 21(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37233478

RESUMO

Nocuolin A (1), an oxadiazine, was isolated from the cyanobacterium Nostoc sp. Its chemical structure was elucidated using NMR and mass spectroscopic data. From this compound, two new oxadiazines, 3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropyl acetate (2) and 4-{3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropoxy}-4-oxobutanoic acid (3), were synthesised. The chemical structures of these two compounds were elucidated by a combination of NMR and MS analysis. Compound 3 showed cytotoxicity against the ACHN (0.73 ± 0.10 µM) and Hepa-1c1c7 (0.91 ± 0.08 µM) tumour cell lines. Similarly, compound 3 significantly decreased cathepsin B activity in ACHN and Hepa-1c1c7 tumour cell lines at concentrations of 1.52 ± 0.13 nM and 1.76 ± 0.24 nM, respectively. In addition, compound 3 showed no in vivo toxicity in a murine model treated with a dose of 4 mg/kg body weight.


Assuntos
Catepsina B , Nostoc , Animais , Camundongos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Estrutura Molecular
2.
Nat Prod Res ; 35(24): 6204-6209, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33111583

RESUMO

Activity-guided fractionations from the freshwater cyanobacterium Nodularia harveyana led to the isolation of two monogalactosyldiacylglycerols (MGDG), two digalactosyldiacylglycerols (DGDG), two monoglucosyldiacylglycerols (MGlcDG) and 1-(O-hexose)-3,25-hexacosanediol (HG). Structures were elucidated by a combination of 1D and 2D NMR analysis, HRMS and GC-MS. The potential for inhibition against TNF-α and NF-κB production of these seven compounds was tested in THP-1 cells. All compounds showed activity, but compound 7 showed higher inhibitory activity of TNF-α and NF-κB, with IC50 of 4.88 ± 0.13 and 3.64 ± 0.45 µM, respectively.


Assuntos
Anti-Inflamatórios , Cianobactérias , Glicolipídeos/farmacologia , Nodularia , Anti-Inflamatórios/farmacologia , Cianobactérias/química , Humanos , NF-kappa B , Nodularia/química , Células THP-1
3.
RSC Med Chem ; 11(10): 1196-1209, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479624

RESUMO

Thirty-five macamide analogues were synthesised by modifying the initial molecular structure. The resulting structures were confirmed using NMR and MS. Cytotoxicity and the anti-inflammatory activity of these synthetic macamides were evaluated in the THP-1 cell line. Preliminary biological evaluation indicated that most of these synthetic macamides did not present cytotoxicity (MTT assay) in the tested cell line with respect to the control (actinomycin D). Regarding the anti-inflammatory activity, several analogues had a greater potential for inhibition of TNF-α than natural macamides. Synthetic macamide 4a was the most active (IC50 = 0.009 ± 0.001 µM) compared to the C87 (control). Through looking at the link between the chemical structure and the activity, our study proves that changes made to natural macamides at the level of the alkyl chain, the benzyl position, the amide bond, and the addition of two methyl groups to the aromatic ring (meta position) lead us to obtaining new macamides with greater anti-inflammatory activity.

4.
J Ethnopharmacol ; 247: 112152, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31421183

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tropaeolum tuberosum Ruíz & Pavón (Tropaeolaceae). Sim (commonly called Mashua) is an indigenous plant that has medicinal values for various ethnic groups of the regions of the Andes mountain range of South America, which use it for the treatment of diseases venereal, lung and skin; for the healing of internal and external wounds; and as an analgesic for kidney and bladder pain. AIM OF THE REVIEW: We critically summarised the current evidence on the botanic characterisation and distribution, ethnopharmacology, secondary metabolites, pharmacological activities, qualitative and quantitative analysis, and toxicology of T. tuberosum. MATERIALS AND METHODS: The relevant information on T. tuberosum was gathered from worldwide accepted scientific databases via electronic search (Google scholar, Elsevier, SciFinder, ScienceDirect, PubMed, SpringerLink, Web of Science, Scopus, Wiley Online, Mendeley, Scielo and Dialnet electronic databases). Information was also obtained from the literature and books as well as PhD and MSc dissertations. Plant names were validated by 'The Plant List' (www.theplantlist.org). RESULTS: T. tuberosum has diverse uses in local and popular medicine, specifically for relieving pain and infections in humans. Regarding its biological activities, polar extracts (aqueous, hydroalcoholic) and isolated compounds from the tubers have exhibited a wide range of in vitro and in vivo pharmacological effects, including antibacterial, antioxidant, anti-inflammatory activities. Quantitative analysis (e.g., NMR, HPLC, GC-MS) indicated the presence of a set of secondary metabolites, including hydroxybenzoic acids, tannins, flavanols, anthocyanins, glucosinolates, isothiocyanates, phytosterols, fatty acids and alkamides in the tubers of T. tuberosum. Likewise, glucosinolates have been identified in the seeds and isothiocyanates have been detected in leaves, flowers and seeds. CONCLUSIONS: T. tuberosum has been tested for various biological activities and the extracts (tubers in particular) demonstrated a promising potential as an antibacterial, antioxidant, anti-inflammatory and inhibitors of benign prostatic hyperplasia. A lack of alignment between the ethno-medicinal uses and existing biological screenings was observed, indicating the need to explore its potential for the treatment against respiratory affections, urinary affections and blood diseases. Likewise, it is necessary to analyse deeply the relationship that exists between the different tuber colours of T. tuberosum and its use for the treatment of certain diseases. Validation of clinical studies of the antibacterial, antioxidant/anti-inflammatory, anti-spermatogenic activities and as inhibitors of benign prostatic hyperplasia is required. Moreover, studies on the toxicity, bioavailability, and pharmacokinetics, in addition to clinical trials, are indispensable for assessing the safety and efficacy of the active metabolites or extracts obtained from T. tuberosum. Other areas that need investigation are the development of future applications based on their active metabolites, such as neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease). Finally, the work purposes to motivate other research groups to carry out a series of scientific studies that can fill the gaps that exist with respect to Mashua properties, and thus be able to change the focus of T. tuberosum (Mashua) that currently has in the consumer society.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Tropaeolum/química , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Etnofarmacologia , Humanos , Extratos Vegetais/uso terapêutico , Tubérculos/química , América do Sul
5.
J Ethnopharmacol ; 235: 199-205, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30753883

RESUMO

ETHNO-PHARMACOLOGICAL RELEVANCE: Tropaeolum tuberosum, commonly known as "Mashua", is one of the plants most frequently used by Andean (Peruvian-Bolivian) people as food and medicine. It is used as a remedy against a wide range of diseases, especially those related with inflammation. OBJECTIVES: This study aims to identify compounds active against inflammatory related conditions. MATERIALS AND METHODS: A bioassay-guided isolation of anti-inflammatory compounds from black and purple tubers of T. tuberosum was performed measuring TNF-α and NF-κB production in THP-1 monocytic cells. RESULTS: The bioassay-guided isolation led to one active compound from purple T. tuberosum, N-oleoyldopamine (1), and another active compound from black T. tuberosum, N-(2-Hydroxyethyl)-7Z,10Z,13Z,16Z-docosatetraenamide (2). Both compounds displayed anti-TNF-α activity with IC50 values of 3.12 ±â€¯0.19 µM and 1.56 ±â€¯0.15 µM, respectively. Also, both compounds suppressed NF-κB with IC50 of 3.54 ±â€¯0.02 µM and 1.77 ±â€¯0.07 µM, respectively. CONCLUSIONS: We identified bioactive compounds from purple and black Tropaeolum tuberosum responsible for their anti-inflammatory activity: N-oleoyldopamine (1) and N-(2-Hydroxyethyl)-7Z,10Z,13Z,16Z-docosatetraenamide (2). This is the first report which isolates these compounds from T. tuberosum and describes their anti-inflammatory activities.


Assuntos
Amidas/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Tropaeolum/química , Amidas/administração & dosagem , Amidas/isolamento & purificação , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Humanos , Inflamação/patologia , Concentração Inibidora 50 , Medicina Tradicional/métodos , NF-kappa B/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
6.
J Nat Prod ; 81(2): 410-413, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29432010

RESUMO

Cybastacines A (1) and B (2) were discovered as a novel pentacyclic sesterterpenoid-alkaloid skeleton structure, with a guanidinium group. These molecules were isolated from a Nostoc sp. cyanobacterium collected in the Canary Islands. Their structures were elucidated primarily by a combination of spectroscopic analyses and X-ray diffraction. These compounds showed antibiotic activities against several clinically relevant bacterial strains.


Assuntos
Antibacterianos/química , Nostoc/química , Sesterterpenos/química , Guanidina/química , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA