Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 20(1): 291, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072991

RESUMO

Coxsackievirus Group B type 5 (CVB5), an important pathogen of hand-foot-mouth disease, is also associated with neurological complications and poses a public health threat to young infants. Among the CVB5 proteins, the nonstructural protein 3D, known as the Enteroviral RNA-dependent RNA polymerase, is mainly involved in viral genome replication and transcription. In this study, we performed immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify host proteins that interacted with CVB5 3D polymerase. A total of 116 differentially expressed proteins were obtained. Gene Ontology analysis identified that the proteins were involved in cell development and cell adhesion, distributed in the desmosome and envelope, and participated in GTPase binding. Kyoto Encyclopedia of Genes and Genomes analysis further revealed they participated in nerve diseases, such as Parkinson disease. Among them, 35 proteins were significantly differentially expressed and the cellular protein TGF-BATA-activated kinase1 binding protein 1 (TAB1) was found to be specifically interacting with the 3D polymerase. 3D polymerase facilitated the entry of TAB1 into the nucleus and down-regulated TAB1 expression via the lysosomal pathway. In addition, TAB1 inhibited CVB5 replication via inducing inflammatory factors and activated the NF-κB pathway through IκBα phosphorylation. Moreover, the 90-96aa domain of TAB1 was an important structure for the function. Collectively, our findings demonstrate the mechanism by which cellular TAB1 inhibits the CVB5 replication via activation of the host innate immune response, providing a novel insight into the virus-host innate immunity.


Assuntos
Doença de Mão, Pé e Boca , NF-kappa B , Humanos , NF-kappa B/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Imunidade Inata , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Virol Sin ; 38(5): 699-708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543144

RESUMO

Long noncoding RNAs (lncRNAs) modulate many aspects of biological and pathological processes. Recent studies have shown that host lncRNAs participate in the antiviral immune response, but functional lncRNAs in coxsackievirus B5 (CVB5) infection remain unknown. Here, we identified a novel cytoplasmic lncRNA, LINC1392, which was highly inducible in CVB5 infected RD cells in a time- and dose-dependent manner, and also can be induced by the viral RNA and IFN-ß. Further investigation showed that LINC1392 promoted several important interferon-stimulated genes (ISGs) expression, including IFIT1, IFIT2, and IFITM3 by activating MDA5, thereby inhibiting the replication of CVB5 in vitro. Mechanistically, LINC1392 bound to ELAV like RNA binding protein 1 (ELAVL1) and blocked ELAVL1 interaction with MDA5. Functional study revealed that the 245-835 â€‹nt locus of LINC1392 exerted the antiviral effect and was also an important site for ELAVL1 binding. In mice, LINC1392 could inhibit CVB5 replication and alleviated the histopathological lesions of intestinal and brain tissues induced by viral infection. Our findings collectively reveal that the novel LINC1392 acts as a positive regulator in the IFN-I signaling pathway against CVB5 infection. Elucidating the underlying mechanisms on how lncRNA regulats the host innate immunity response towards CVB5 infection will lay the foundation for antiviral drug research.


Assuntos
Interferon Tipo I , RNA Longo não Codificante , Animais , Camundongos , Enterovirus Humano B/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Interferon Tipo I/genética , RNA Longo não Codificante/genética , Transdução de Sinais/genética
3.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563023

RESUMO

Hand, foot and mouth disease (HFMD) caused by Coxsackievirus Group B5 (CVB5) is one of the most common herpetic diseases in human infants and children. The pathogenesis of CVB5 remains unknown. Circular RNAs (CircRNAs), as novel noncoding RNAs, have been shown to play a key role in many pathogenic processes in different species; however, their functions during the process of CVB5 infection remain unclear. In the present study, we investigated the expression profiles of circRNAs using RNA sequencing technology in CVB5-infected and mock-infected human rhabdomyosarcoma cells (CVB5 virus that had been isolated from clinical specimens). In addition, several differentially expressed circRNAs were validated by RT-qPCR. Moreover, the innate immune responses related to circRNA-miRNA-mRNA interaction networks were constructed and verified. A total of 5461 circRNAs were identified at different genomic locations in CVB5 infections and controls, of which 235 were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that the differentially expressed circRNAs were principally involved in specific signaling pathways related to ErbB, TNF, and innate immunity. We further predicted that novel_circ_0002006 might act as a molecular sponge for miR-152-3p through the IFN-I pathway to inhibit CVB5 replication, and that novel_circ_0001066 might act as a molecular sponge for miR-29b-3p via the NF-κB pathway and for the inhibition of CVB5 replication. These findings will help to elucidate the biological functions of circRNAs in the progression of CVB5-related HFMD and identify prospective biomarkers and therapeutic targets for this disease.


Assuntos
Redes Reguladoras de Genes , MicroRNAs , RNA Circular , Rabdomiossarcoma , Biologia Computacional , Enterovirus Humano B/metabolismo , Redes Reguladoras de Genes/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rabdomiossarcoma/genética
4.
Arch Virol ; 167(2): 367-376, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839420

RESUMO

Hand, foot, and mouth disease caused by coxsackievirus B5 (CV-B5) is a considerable threat to infant health, especially with regard to neurological damage. Long noncoding RNAs (lncRNAs) are known to play pivotal roles in virus-host interactions. However, the roles of lncRNAs in CV-B5-host interactions have not yet been elucidated. In the current study, we used RNA sequencing to determine the expression profiles of lncRNAs in CV-B5-infected human rhabdomyosarcoma (RD) and SH-SY5Y cells. Our results showed that, of the differentially expressed lncRNAs, 508 were upregulated and 760 were downregulated in RD cells. Of these, 46.2% were long noncoding intergenic RNAs (lincRNAs), 28.6% were antisense lncRNAs, 24.1% were sense overlapping lncRNAs, and 1.0% were sense intronic lncRNAs. Moreover, 792 lncRNAs were upregulated and 811 lncRNAs were downregulated in SH-SY5Y cells, 48.6% of which were lincRNAs, 34.7% were antisense lncRNAs, 16.0% were sense overlapping lncRNAs, and 0.8% were sense intronic lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that lncRNAs that were differentially expressed in CV-B5-infected RD cells were associated with disease, and those differentially expressed in SH-SY5Y cells were involved in signaling pathways. RT-qPCR analysis of seven lncRNAs supported these results. Moreover, our study revealed that lncRNA-IL12A inhibits viral replication. We conclude that lncRNAs constitute potential novel molecular targets for the prevention and treatment of CV-B5 infection and also may serve to distinguish neurogenic diseases caused by CV-B5 infection.


Assuntos
RNA Longo não Codificante , Rabdomiossarcoma , Perfilação da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , RNA Mensageiro , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA