Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
STAR Protoc ; 3(3): 101631, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36035792

RESUMO

Preparation of highly efficient and stable perovskite light-emitting diodes (PeLEDs) with reproducible device performance is challenging. This protocol describes steps for fabrication of high-performance and self-healing PeLEDs. These include instructions for synthesis of charge-transporting zinc oxide (ZnO) nanocrystals, step-by-step device fabrication, and control over self-healing of the degraded devices. For complete details on the use and execution of this protocol, please refer to Teng et al. (2021).


Assuntos
Compostos de Cálcio , Óxidos , Titânio
2.
Nat Commun ; 12(1): 4831, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376647

RESUMO

Molecular additives are widely utilized to minimize non-radiative recombination in metal halide perovskite emitters due to their passivation effects from chemical bonds with ionic defects. However, a general and puzzling observation that can hardly be rationalized by passivation alone is that most of the molecular additives enabling high-efficiency perovskite light-emitting diodes (PeLEDs) are chelating (multidentate) molecules, while their respective monodentate counterparts receive limited attention. Here, we reveal the largely ignored yet critical role of the chelate effect on governing crystallization dynamics of perovskite emitters and mitigating trap-mediated non-radiative losses. Specifically, we discover that the chelate effect enhances lead-additive coordination affinity, enabling the formation of thermodynamically stable intermediate phases and inhibiting halide coordination-driven perovskite nucleation. The retarded perovskite nucleation and crystal growth are key to high crystal quality and thus efficient electroluminescence. Our work elucidates the full effects of molecular additives on PeLEDs by uncovering the chelate effect as an important feature within perovskite crystallization. As such, we open new prospects for the rationalized screening of highly effective molecular additives.

3.
Nat Commun ; 12(1): 361, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441549

RESUMO

Bright and efficient blue emission is key to further development of metal halide perovskite light-emitting diodes. Although modifying bromide/chloride composition is straightforward to achieve blue emission, practical implementation of this strategy has been challenging due to poor colour stability and severe photoluminescence quenching. Both detrimental effects become increasingly prominent in perovskites with the high chloride content needed to produce blue emission. Here, we solve these critical challenges in mixed halide perovskites and demonstrate spectrally stable blue perovskite light-emitting diodes over a wide range of emission wavelengths from 490 to 451 nanometres. The emission colour is directly tuned by modifying the halide composition. Particularly, our blue and deep-blue light-emitting diodes based on three-dimensional perovskites show high EQE values of 11.0% and 5.5% with emission peaks at 477 and 467 nm, respectively. These achievements are enabled by a vapour-assisted crystallization technique, which largely mitigates local compositional heterogeneity and ion migration.

4.
Nat Electron ; 3(3): 156-164, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32226921

RESUMO

The integration of optical signal generation and reception into one device - and thus allowing bidirectional optical signal transmission between two identical devices - is of value in the development of miniaturized and integrated optoelectronic devices. However, conventional solution-processable semiconductors have intrinsic material and design limitations that prevent them from being used to create such devices with high performance. Here, we report an efficient solution-processed perovskite diode that is capable of working in both emission and detection modes. The device can be switched between modes by changing the bias direction, and it exhibits light emission with an external quantum efficiency of over 21% and a light detection limit on a sub-picowatt scale. The operation speed for both functions can reach tens of megahertz. Benefiting from the small Stokes shift of perovskites, our diodes exhibit high specific detectivity (more than 2×1012 Jones) at its peak emission (~804 nm), allowing optical signal exchange between two identical diodes. To illustrate the potential of the dual-functional diode, we show that it can be used to create a monolithic pulse sensor and a bidirectional optical communication system.

5.
ACS Appl Mater Interfaces ; 10(11): 9541-9546, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29485858

RESUMO

It is a great challenge to obtain the uniform films of bromide-rich perovskites such as CsPbBr3 in the two-step sequential solution process (two-step method), which was mainly due to the decomposition of the precursor films in solution. Herein, we demonstrated a novel and elegant face-down liquid-space-restricted deposition to inhibit the decomposition and fabricate high-quality CsPbBr3 perovskite films. This method is highly reproducible, and the surface of the films was smooth and uniform with an average grain size of 860 nm. As a consequence, the planar perovskite solar cells (PSCs) without the hole-transport layer based on CsPbBr3 and carbon electrodes exhibit enhanced power conversion efficiency (PCE) along with high open circuit voltage ( VOC). The champion device has achieved a PCE of 5.86% with a VOC of 1.34 V, which to our knowledge is the highest performing CsPbBr3 PSC in planar structure. Our results suggest an efficient and low-cost route to fabricate the high-quality planar all-inorganic PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA