Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
World J Clin Cases ; 12(18): 3461-3467, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38983396

RESUMO

BACKGROUND: Coronary heart disease (CHD) and heart failure (HF) are the major causes of morbidity and mortality worldwide. Early and accurate diagnoses of CHD and HF are essential for optimal management and prognosis. However, conventional diagnostic methods such as electrocardiography, echocardiography, and cardiac biomarkers have certain limitations, such as low sensitivity, specificity, availability, and cost-effectiveness. Therefore, there is a need for simple, noninvasive, and reliable biomarkers to diagnose CHD and HF. AIM: To investigate serum cystatin C (Cys-C), monocyte/high-density lipoprotein cholesterol ratio (MHR), and uric acid (UA) diagnostic values for CHD and HF. METHODS: We enrolled 80 patients with suspected CHD or HF who were admitted to our hospital between July 2022 and July 2023. The patients were divided into CHD (n = 20), HF (n = 20), CHD + HF (n = 20), and control groups (n = 20). The serum levels of Cys-C, MHR, and UA were measured using immunonephelometry and an enzymatic method, respectively, and the diagnostic values for CHD and HF were evaluated using receiver operating characteristic (ROC) curve analysis. RESULTS: Serum levels of Cys-C, MHR, and UA were significantly higher in the CHD, HF, and CHD + HF groups than those in the control group. The serum levels of Cys-C, MHR, and UA were significantly higher in the CHD + HF group than those in the CHD or HF group. The ROC curve analysis showed that serum Cys-C, MHR, and UA had good diagnostic performance for CHD and HF, with areas under the curve ranging from 0.78 to 0.93. The optimal cutoff values of serum Cys-C, MHR, and UA for diagnosing CHD, HF, and CHD+HF were 1.2 mg/L, 0.9 × 109, and 389 µmol/L; 1.4 mg/L, 1.0 × 109, and 449 µmol/L; and 1.6 mg/L, 1.1 × 109, and 508 µmol/L, respectively. CONCLUSION: Serum Cys-C, MHR, and UA are useful biomarkers for diagnosing CHD and HF, and CHD+HF. These can provide information for decision-making and risk stratification in patients with CHD and HF.

2.
Sci Adv ; 10(30): eadl4694, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39047090

RESUMO

The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.


Assuntos
Actinas , Astrócitos , Proteínas de Drosophila , Células-Tronco Neurais , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Actinas/metabolismo , Astrócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Citoesqueleto de Actina/metabolismo , Drosophila melanogaster/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
3.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38903085

RESUMO

The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.

4.
J Med Virol ; 96(4): e29577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572977

RESUMO

Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Leucócitos Mononucleares , NF-kappa B , SARS-CoV-2 , Vacinas de Produtos Inativados , Imunidade , Análise de Sequência de RNA , Anticorpos Antivirais
5.
World J Clin Cases ; 12(7): 1251-1259, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38524506

RESUMO

BACKGROUND: Testicular torsion is the most common acute scrotum worldwide and mainly occurs in children and adolescents. Studies have demonstrated that the duration of symptoms and torsion grade lead to different outcomes in children diagnosed with testicular torsion. AIM: To predict the possibility of testicular salvage (TS) in patients with testicular torsion in a tertiary center. METHODS: We reviewed the charts of 75 pediatric patients with acute testicular torsion during a 12-year period from November 2011 to July 2023 at the Suzhou Hospital of Anhui Medical University. Univariate and multivariate logistic regression analyses were used to determine independent predictors of testicular torsion. The data included clinical findings, physical examinations, laboratory data, color Doppler ultrasound findings, operating results, age, presenting institution status, and follow-up results. RESULTS: Our study included 75 patients. TS was possible in 57.3% of all patients; testicular torsion occurred mostly in winter, and teenagers aged 11-15 years old accounted for 60%. Univariate logistic regression analyses revealed that younger age (P = 0.09), body mass index (P = 0.004), torsion angle (P = 0.013), red blood cell count (P = 0.03), neutrophil-to-lymphocyte ratio (P = 0.009), and initial presenting institution (P < 0.001) were associated with orchiectomy. In multivariate analysis, only the initial presenting institution predicted TS (P < 0.05). CONCLUSION: The initial presenting institution has a predictive value for predicting TS in patients with testicular torsion. Children with scrotal pain should be admitted to a tertiary hospital as soon as possible.

6.
Cell Death Discov ; 10(1): 154, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538582

RESUMO

We have previously shown that nucleosome assembly protein 1-like 1 (NAP1L1) plays an important role in the abnormal proliferation of hepatocellular carcinoma (HCC) cells. However, the effects of NAP1L1 on the malignant behaviour of HCC cells, including cell migration, invasion and apoptosis, remain unclear. Baculoviral IAP repeat-containing 2 (BIRC2) plays a key role in initiating the abnormal proliferation, apoptotic escape and multidrug resistance of HCC cells; however, the mechanisms through which its stability is regulated in HCC remain elusive. Here, we found that knockdown of NAP1L1 inhibited the proliferation of HCC cells and activated apoptotic pathways but did not remarkably affect the migratory and invasive abilities of HCC cells. In addition, knockdown of NAP1L1 did not alter the expression of BIRC2 at the transcriptional level but substantially reduced its expression at the translational level, suggesting that NAP1L1 is involved in the post-translational modification (such as ubiquitination) of BIRC2. Furthermore, BIRC2 was highly expressed in human HCC tissues and promoted the proliferation and apoptotic escape of HCC cells. Co-immunoprecipitation (Co-IP) assay and mass spectrometry revealed that NAP1L1 and BIRC2 did not bind to each other; however, ubiquitin protein ligase E3 component n-recognin 4 (UBR4) was identified as an intermediate molecule associating NAP1L1 with BIRC2. Knockdown of NAP1L1 promoted the ubiquitin-mediated degradation of BIRC2 through the ubiquitin-protein junction of UBR4, which in turn inhibited the proliferation and apoptotic escape of HCC cells and exerted anti-tumour effects. In conclusion, this study reveals a novel mechanism through which NAP1L1 regulates the ubiquitination of BIRC2 through UBR4, thereby determining the progression of HCC. Based on this mechanism, suppression of NAP1L1 may inhibit tumour progression in patients with HCC with high protein expression of NAP1L1 or BIRC2.

7.
Appl Environ Microbiol ; 90(4): e0235523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535171

RESUMO

Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.


Assuntos
Chenopodiaceae , Solo , Solo/química , Solução Salina , Cloreto de Sódio , Nitrificação , Plantas Tolerantes a Sal
8.
JFMS Open Rep ; 9(2): 20551169231210449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115862

RESUMO

Case series summary: Two cases of placement of modified endoluminal ureteral stents are described, for revision of a subcutaneous ureteral bypass (SUB) and for primary treatment of obstructive ureterolithiasis. Modified endoluminal stents were inserted through the ureterotomy, anchored in the renal pelvis with a single pigtail and shortened to a length sufficient to span the proximal ureter and ureterotomy site. Relevance and novel information: The advantages of this approach as a surgical option for feline obstructive ureterolithiasis are demonstrated, including the avoidance of disruption, or bypass, of the ureterovesicular junction, minimisation of implanted foreign material and avoidance of intravesicular stent mass, maintenance of the physiological route of urine flow, including preservation of active distal ureteral function, and limitation of the potential complications of ureterotomy. The clinical efficacy of this adaptation of the previously published endoluminal stenting technique is demonstrated with its applicability de novo and in the revision of other stenting procedures.

9.
Curr Biol ; 33(22): R1205-R1207, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37989102

RESUMO

A new study shows that cell size, in conjunction with specific signaling pathways, controls apoptosis within developing tissues. Cells with smaller sizes and relatively smaller sizes compared to their neighbors exhibit an increased likelihood of undergoing apoptosis. These processes are regulated by the Hippo/YAP and Notch pathways, respectively.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Diferenciação Celular , Proliferação de Células , Homeostase , Tamanho Celular
10.
Dev Cell ; 58(19): 1933-1949.e5, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567172

RESUMO

The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. In Drosophila, quiescent neural stem cells (qNSCs) extend a primary protrusion, a hallmark of qNSCs. Here, we have found that qNSC protrusions can be regenerated upon injury. This regeneration process relies on the Golgi apparatus that acts as the major acentrosomal microtubule-organizing center in qNSCs. A Golgi-resident GTPase Arf1 and its guanine nucleotide exchange factor Sec71 promote NSC reactivation and regeneration via the regulation of microtubule growth. Arf1 physically associates with its new effector mini spindles (Msps)/XMAP215, a microtubule polymerase. Finally, Arf1 functions upstream of Msps to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings have established Drosophila qNSCs as a regeneration model and identified Arf1/Sec71-Msps pathway in the regulation of microtubule growth and NSC reactivation.

11.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3904-3912, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475082

RESUMO

The effects of oenothein B(OEB) on the proliferation, apoptosis, invasion, and migration of breast cancer MCF-7 and MDA-MB-231 cells were investigated by cell culture in vitro, network pharmacology, and molecular docking. In vitro cell experiments revealed that OEB inhibited the proliferation and colony formation ability, and promoted the apoptosis and formation of apoptotic bodies in breast cancer cells, as well as inhibited the invasion and migration of breast cancer cells. The targets of OEB were obtained using SwissTargetPrediction database and breast cancer targets were obtained from GeneCards. The targets of OEB and breast cancer were entered separately in Venny 2.1 software to obtain the Venn diagram of common targets of OEB and breast cancer. The common targets of OEB and breast cancer were input into STRING database to construct a protein-protein interaction(PPI) network, which was entered into Cytoscape 3.7.2 software for network topology analysis. Key targets were screened according to protein association strength, and analyzed for KEGG pathway enrichment. Molecular docking of OEB to key targets using AutoDock software revealed that OEB stably bound to the active pocket of P53, while OEB promoted the expression of P53 protein. MCF-7 and MDA-MB-231 cell viability and migration ability increased after silencing P53, and this change was reversed after treatment with OEB. Therefore, this study showed that OEB inhibited the proliferation, migration, and invasion of breast cancer MCF-7 and MDA-MB-231 cells, and promoted the apoptosis of breast cancer MCF-7 and MDA-MB-231 cells, which may be related to the targeted regulation of P53.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Proliferação de Células , Neoplasias da Mama/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Simulação de Acoplamento Molecular
12.
EMBO Rep ; 24(9): e56624, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37440685

RESUMO

The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (qNSCs) extend a primary protrusion that is enriched in acentrosomal microtubules and can be regenerated upon injury. Arf1 promotes microtubule growth, reactivation (exit from quiescence), and regeneration of qNSC protrusions upon injury. However, how Arf1 is regulated in qNSCs remains elusive. Here, we show that the microtubule minus-end binding protein Patronin/CAMSAP promotes acentrosomal microtubule growth and quiescent NSC reactivation. Patronin is important for the localization of Arf1 at Golgi and physically associates with Arf1, preferentially with its GDP-bound form. Patronin is also required for the regeneration of qNSC protrusion, likely via the regulation of microtubule growth. Finally, Patronin functions upstream of Arf1 and its effector Msps/XMAP215 to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings reveal a novel link between Patronin/CAMSAP and Arf1 in the regulation of microtubule growth and NSC reactivation. A similar mechanism might apply to various microtubule-dependent systems in mammals.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Drosophila/metabolismo , Microtúbulos/metabolismo , Proteínas de Drosophila/metabolismo , Células-Tronco Neurais/metabolismo , Mamíferos/metabolismo
13.
Sheng Li Xue Bao ; 75(3): 339-350, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37340643

RESUMO

This paper aimed to investigate the role and potential mechanism of p53 on primordial follicle activation. Firstly, the p53 mRNA expression in the ovary of neonatal mice at 3, 5, 7 and 9 days post-partum (dpp) and the subcellular localization of p53 were detected to confirm the expression pattern of p53. Secondly, 2 dpp and 3 dpp ovaries were cultured with p53 inhibitor Pifithrin-µ (PFT-µ, 5 µmol/L) or equal volume of dimethyl sulfoxide for 3 days. The function of p53 in primordial follicle activation was determined by hematoxylin staining and whole ovary follicle counting. The proliferation of cell was detected by immunohistochemistry. The relative mRNA levels and protein levels of the key molecules involved in the classical pathways associated with the growing follicles were examined by immunofluorescence staining, Western blot and real-time PCR, respectively. Finally, rapamycin (RAP) was used to intervene the mTOR signaling pathway, and ovaries were divided into four groups: Control, RAP (1 µmol/L), PFT-µ (5 µmol/L), PFT-µ (5 µmol/L) + RAP (1 µmol/L) groups. The number of follicles in each group was determined by hematoxylin staining and whole ovary follicle counting. The results showed that the expression of p53 mRNA was decreased with the activation of primordial follicles in physiological condition. p53 was expressed in granulosa cells and oocyte cytoplasm of the primordial follicles and growing follicles, and the expression of p53 in the primordial follicles was higher than that in the growing follicles. Inhibition of p53 promoted follicle activation and reduced the primordial follicle reserve. Inhibition of p53 promoted the proliferation of the granulosa cells and oocytes. The mRNA and protein expression levels of key molecules in the PI3K/AKT signaling pathway including AKT, PTEN, and FOXO3a were not significantly changed after PFT-µ treatment, while the expression of RPS6/p-RPS6, the downstream effectors of the mTOR signaling pathway, was upregulated. Inhibition of both p53 and mTOR blocked p53 inhibition-induced primordial follicle activation. Collectively, these findings suggest that p53 may inhibit primordial follicle activation through the mTOR signaling pathway to maintain the primordial follicle reserve.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Proteína Supressora de Tumor p53 , Feminino , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hematoxilina , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR , Sirolimo , RNA Mensageiro
14.
Dev Cell ; 58(4): 267-277.e5, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36800994

RESUMO

The number of cells in tissues is controlled by cell division and cell death, and its misregulation could lead to pathological conditions such as cancer. To maintain the cell numbers, a cell-elimination process called apoptosis also stimulates the proliferation of neighboring cells. This mechanism, apoptosis-induced compensatory proliferation, was originally described more than 40 years ago. Although only a limited number of the neighboring cells need to divide to compensate for the apoptotic cell loss, the mechanisms that select cells to divide have remained elusive. Here, we found that spatial inhomogeneity in Yes-associated protein (YAP)-mediated mechanotransduction in neighboring tissues determines the inhomogeneity of compensatory proliferation in Madin-Darby canine kidney (MDCK) cells. Such inhomogeneity arises from the non-uniform distribution of nuclear size and the non-uniform pattern of mechanical force applied to neighboring cells. Our findings from a mechanical perspective provide additional insight into how tissues precisely maintain homeostasis.


Assuntos
Apoptose , Mecanotransdução Celular , Animais , Cães , Apoptose/fisiologia , Morte Celular , Divisão Celular , Células Madin Darby de Rim Canino , Proliferação de Células/fisiologia
15.
iScience ; 25(11): 105446, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36388955

RESUMO

Transmembrane protein 16A (TMEM16A) localizes at plasma membrane and controls chloride influx in various type of cells. We here showed an intracellular localization pattern of TMEM16A molecules. In myoblasts, TMEM16A was primarily localized to the cytosolic compartment and partially co-localized with intracellular organelles. The global deletion of TMEM16A led to severe skeletal muscle developmental defect. In vitro observation showed that the proliferation of Tmem16a-/- myoblasts was significantly promoted along with activated ERK1/2 and Cyclin D expression; the myogenic differentiation was impaired accompanied by the enhanced caspase 12/3 activation, implying enhanced endoplasmic reticulum (ER) stress. Interestingly, the bradykinin-induced Ca2+ release from ER calcium store was significantly enhanced after TMEM16A deletion. This suggested a suppressing role of intracellular TMEM16A in ER calcium release whereby regulating the flux of chloride ion across the ER membrane. Our findings reveal a unique location pattern of TMEM16A in undifferentiated myoblasts and its role in myogenesis.

16.
Front Immunol ; 13: 914468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860280

RESUMO

We report a novel model of lupus-associated cardiovascular pathology accelerated by the TLR7 agonist R848 in lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice. R848-treated TC mice but not non-autoimmune C57BL/6 (B6) controls developed microvascular inflammation and myocytolysis with intracellular vacuolization. This histopathology was similar to antibody-mediated rejection after heart transplant, although it did not involve complement. The TC or B6 recipients of serum or splenocytes from R848-treated TC mice developed a reactive cardiomyocyte hypertrophy, which also presents spontaneously in old TC mice as well as in TC.Rag-/- mice that lack B and T cells. Each of these cardiovascular lesions correspond to abnormalities that have been reported in lupus patients. Lymphoid and non-lymphoid immune cells as well as soluble factors contribute to lupus-associated cardiovascular lesions in TC mice, which can now be dissected using this model with and without R848 treatment.


Assuntos
Glicoproteínas de Membrana/metabolismo , Linfócitos T , Receptor 7 Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
17.
Langmuir ; 38(24): 7455-7461, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35676767

RESUMO

The development of nanomaterials such as two-dimensional (2D) layered materials advanced applications in many fields, including biosensors format based on field-effect transistors. The unique physical and chemical properties of 2D layered materials enable the detection limit of biomolecules as low as ∼1 pg/mL. The majority of 2D layered materials contain different structural features and defects introduced in chemical synthesis and fabrication processing. These structural features have different physicochemical properties, causing heterogeneous adsorption of bioreceptors like antibodies, enzymes, etc. Understanding the correlation between the adsorption of bioreceptors and properties of structural features is essential for building highly efficient, sensitive biosensors based on 2D layered materials. Here, we utilize a single-molecule localization-based super-resolved fluorescence imaging method to unveil the inhomogeneous adsorption of antibody fragments on 2D layered molybdenum disulfide (MoS2). The surface coverage of antibody fragments on MoS2 thin flakes is quantitatively measured and compared at different structural features and different layer thicknesses. The methodology in the current work can be extended to study bioreceptor adsorption on other types of 2D layered materials and pave a way to improve biosensors' sensitivity based on defect engineering 2D layered materials.


Assuntos
Fragmentos de Imunoglobulinas , Molibdênio , Adsorção , Dissulfetos/química , Molibdênio/química
18.
ACS Nano ; 16(3): 4786-4794, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224974

RESUMO

Defects can locally tailor the electronic properties of 2D materials, including the band gap and electron density, and possess the merit for optical and electronic applications. However, it is still a great challenge to realize rational defect engineering, which requires quantitative study of the effect of defects on electronic properties under ambient conditions. In this work, we employed tip-enhanced photoluminescence (TEPL) spectroscopy to obtain the PL spectra of different defects (wrinkle and edge) in mechanically exfoliated thin-layer transition metal dichalcogenides (TMDCs) with nanometer spatial resolution. We quantitatively obtained the band gap and electron density at defects by analyzing the wavelength and intensity ratio of excitons and trions. We further visualized the strain distribution across a wrinkle and the edge-induced reconstructive regions of the band gap and electron density by TEPL line scans. The doping effect on the Fermi level and optical performance was unveiled through comparative studies of edges on TMDC monolayers of different doping types. These quantitative results are vital to guide defect engineering and design and fabrication of TMDC-based optoelectronics devices.

19.
Annu Rev Phys Chem ; 73: 377-402, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35119943

RESUMO

Optical microscopy has become an invaluable tool for investigating complex samples. Over the years, many advances to optical microscopes have been made that have allowed us to uncover new insights into the samples studied. Dynamic changes in biological and chemical systems are of utmost importance to study. To probe these samples, multidimensional approaches have been developed to acquire a fuller understanding of the system of interest. These dimensions include the spatial information, such as the three-dimensional coordinates and orientation of the optical probes, and additional chemical and physical properties through combining microscopy with various spectroscopic techniques. In this review, we survey the field of multidimensional microscopy and provide an outlook on the field and challenges that may arise.


Assuntos
Microscopia , Microscopia/métodos
20.
Phytomedicine ; 93: 153765, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34610527

RESUMO

BACKGROUND: Hyperuricemia (HUA) is an important risk factor for gout, renal dysfunction and cardiovascular diseases. The whole plant of Persicaria capitata (Buch.-Ham. ex D. Don) H. Gross, namely Persicaria capitata herba, is a well-known ethnic herb with potent therapeutic effects on urinary tract infections and urinary calculus, yet previous reports have only focused on its effect on urinary tract infections. PURPOSE: To evaluate the therapeutic potential of P. capitata herba against gout by investigating its antihyperuricemia and antigouty arthritis effects and possible mechanisms. METHODS: The ethanol extract (EP) and water extract (WP) of P. capitata herba were prepared by extracting dried and ground whole plants of P. capitata with 75% ethanol and water, respectively, followed by removal of solvents and characterization by UHPLC-Q-TOF/MS. The antihyperuricemia and antigouty arthritis effects of the two extracts were evaluated in a potassium oxonate- and hypoxanthine-induced hyperuricemia mouse model and a monosodium urate crystal (MSUC)-induced acute gouty arthritis mouse model, respectively. The mechanisms were investigated by testing their effects on the expression of correlated proteins (by Western blot) and mRNAs (by RT-PCR). RESULTS: UHPLC-HRMS fingerprinting and two chemical markers (i.e., quercetin and quercitrin) determination were used for the characterization of the WP and EP extracts. Both WP and EP extracts showed pronounced antihyperuricemia activities, with a remarkable decline in serum uric acid and a marked increase in urine uric acid in hyperuricemic mice. Unlike the clinical xanthine oxidase (XOD) inhibitor allopurinol, WP and EP did not show any distinct renal toxicities. The underlying antihyperuricemia mechanism involves the inhibition of the activity and expression of XOD and the downregulation of the mRNA and protein expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1). The extracts of P. capitata herba also demonstrated remarkable anti-inflammatory activity in MSUC-induced acute gouty arthritis mice. The mechanism might involve inhibitory effects on the expression of proinflammatory factors. CONCLUSIONS: The extracts of P. capitata herba possessed pronounced antihyperuricemia and antigouty arthritis effects and were, therefore, promising natural medicines for hyperuricemia-related disorders and gouty arthritis. The use of P. capitata herba for the treatment of urinary calculus may be, at least to some degree, related to its potential as an antihyperuricemia and antigouty arthritis drug.


Assuntos
Artrite Gotosa , Hiperuricemia , Animais , Artrite Gotosa/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Camundongos , Ácido Oxônico , Extratos Vegetais/farmacologia , Ácido Úrico , Xantina Oxidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA