Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 14, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178075

RESUMO

BACKGROUND: Ambient fine particulate matter (PM2.5) is considered a plausible contributor to the onset of chronic obstructive pulmonary disease (COPD). Mechanistic studies are needed to augment the causality of epidemiologic findings. In this study, we aimed to test the hypothesis that repeated exposure to diesel exhaust particles (DEP), a model PM2.5, causes COPD-like pathophysiologic alterations, consequently leading to the development of specific disease phenotypes. Sprague Dawley rats, representing healthy lungs, were randomly assigned to inhale filtered clean air or DEP at a steady-state concentration of 1.03 mg/m3 (mass concentration), 4 h per day, consecutively for 2, 4, and 8 weeks, respectively. Pulmonary inflammation, morphologies and function were examined. RESULTS: Black carbon (a component of DEP) loading in bronchoalveolar lavage macrophages demonstrated a dose-dependent increase in rats following DEP exposures of different durations, indicating that DEP deposited and accumulated in the peripheral lung. Total wall areas (WAt) of small airways, but not of large airways, were significantly increased following DEP exposures, compared to those following filtered air exposures. Consistently, the expression of α-smooth muscle actin (α-SMA) in peripheral lung was elevated following DEP exposures. Fibrosis areas surrounding the small airways and content of hydroxyproline in lung tissue increased significantly following 4-week and 8-week DEP exposure as compared to the filtered air controls. In addition, goblet cell hyperplasia and mucus hypersecretions were evident in small airways following 4-week and 8-week DEP exposures. Lung resistance and total lung capacity were significantly increased following DEP exposures. Serum levels of two oxidative stress biomarkers (MDA and 8-OHdG) were significantly increased. A dramatical recruitment of eosinophils (14.0-fold increase over the control) and macrophages (3.2-fold increase) to the submucosa area of small airways was observed following DEP exposures. CONCLUSIONS: DEP exposures over the courses of 2 to 8 weeks induced COPD-like pathophysiology in rats, with characteristic small airway remodeling, mucus hypersecretion, and eosinophilic inflammation. The results provide insights on the pathophysiologic mechanisms by which PM2.5 exposures cause COPD especially the eosinophilic phenotype.


Assuntos
Poluentes Atmosféricos , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Ratos Sprague-Dawley , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente
2.
Food Funct ; 14(21): 9841-9856, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850547

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and characterized by emphysema, small airway remodeling and mucus hypersecretion. Citrus peels have been widely used as food spices and in traditional Chinese medicine for chronic lung disease. Given that citrus peels are known for containing antioxidants and anti-inflammatory compounds, we hypothesize that citrus peel intake can suppress oxidative stress and inflammatory response to air pollution exposure, thereby alleviating COPD-like pathologies. This study aimed to investigate the efficacy of citrus peel extract, namely Guang Chenpi (GC), in preventing the development of COPD induced by diesel exhaust particles (DEPs) and its potential mechanism. DEP-induced COPD-like lung pathologies, inflammatory responses and oxidative stress with or without GC treatment were examined in vivo and in vitro. Our in vivo study showed that GC was effective in decreasing inflammatory cell counts and inflammatory mediator (IL-17A and TNF-α) concentrations in bronchoalveolar lavage fluid (BALF). Pretreatment with GC extract also significantly decreased oxidative stress in the serum and lung tissue of DEP-induced COPD rats. Furthermore, GC pretreatment effectively reduced goblet cell hyperplasia (PAS positive cells) and fibrosis of the small airways, decreased macrophage infiltration as well as carbon loading in the peripheral lungs, and facilitated the resolution of emphysema and small airway remodeling in DEP-induced COPD rats. An in vitro free radical scavenging assay revealed robust antioxidant potential of GC in scavenging DPPH free radicals. Moreover, GC demonstrated potent capacities in reducing ROS production and enhancing SOD activity in BEAS-2B cells stimulated by DEPs. GC treatment significantly attenuated the increased level of IL-8 and MUC5AC from DEP-treated BEAS-2B cells. Mechanistically, GC treatment upregulated the protein level of Nrf-2 and could function via MAPK/NF-κB signaling pathways by suppressing the phosphorylation of p38, JNK and p65. Citrus peel extract is effective in decreasing oxidative stress and inflammatory responses of the peripheral lungs to DEP exposure. These protective effects further contributed to the resolution of COPD-like pathologies.


Assuntos
Citrus , Enfisema , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Emissões de Veículos/toxicidade , Citrus/metabolismo , Remodelação das Vias Aéreas , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Líquido da Lavagem Broncoalveolar/química , Enfisema/metabolismo
3.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 3): o697, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21522442

RESUMO

In the title compound, C(28)H(29)FN(2)O(3), the conformation about the ethene bond is E. The piperazine ring adopts a chair conformation. In the crystal, mol-ecules are linked by inter-molecular C-H⋯O hydrogen bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA