Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Prog Nucl Magn Reson Spectrosc ; 138-139: 105-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38065666

RESUMO

This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.


Assuntos
Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos
2.
Front Mol Biosci ; 10: 1308500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099198

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and represents the most common cause of dementia in the elderly population worldwide. Currently, there is no cure for AD, and the continuous increase in the number of susceptible individuals poses one of the most significant emerging threats to public health. However, the molecular pathways involved in the onset and progression of AD are not fully understood. This information is crucial for developing less invasive diagnostic instruments and discovering novel potential therapeutic targets. Metabolomics studies the complete ensemble of endogenous and exogenous metabolites present in biological specimens and may provide an interesting approach to identify alterations in multiple biochemical processes associated with AD onset and evolution. In this mini review, we summarize the results from metabolomic studies conducted using nuclear magnetic resonance (NMR) spectroscopy on human biological samples (blood derivatives, cerebrospinal fluid, urine, saliva, and tissues) from AD patients. We describe the metabolic alterations identified in AD patients compared to controls and to patients diagnosed with mild cognitive impairment (MCI). Moreover, we discuss the challenges and issues associated with the application of NMR-based metabolomics in the context of AD research.

3.
J Proteome Res ; 22(12): 3866-3878, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37970754

RESUMO

Probiotics are live microorganisms that confer health benefits when administered in adequate amounts. They are used to promote gut health and alleviate various disorders. Recently, there has been an increasing interest in the potential effects of probiotics on human physiology. In the presented study, the effects of probiotic treatment on the metabolic profiles of human urine and serum using a nuclear magnetic resonance (NMR)-based metabonomic approach were investigated. Twenty-one healthy volunteers were enrolled in the study, and they received two different dosages of probiotics for 8 weeks. During the study, urine and serum samples were collected from volunteers before and during probiotic supplementation. The results showed that probiotics had a significant impact on the urinary and serum metabolic profiles without altering their phenotypes. This study demonstrated the effects of probiotics in terms of variations of metabolite levels resulting also from the different probiotic posology. Overall, the results suggest that probiotic administration may affect both urine and serum metabolomes, although more research is needed to understand the mechanisms and clinical implications of these effects. NMR-based metabonomic analysis of biofluids is a powerful tool for monitoring host-gut microflora dynamic interaction as well as for assessing the individual response to probiotic treatment.


Assuntos
Líquidos Corporais , Microbioma Gastrointestinal , Probióticos , Humanos , Metaboloma , Metabolômica
4.
iScience ; 26(10): 107678, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37752948

RESUMO

Soft tissue sarcomas (STSs) are rare malignant tumors that are difficult to prognosticate using currently available instruments. Omics sciences could provide more accurate and individualized survival predictions for patients with metastatic STS. In this pilot, hypothesis-generating study, we integrated clinicopathological variables with proton nuclear magnetic resonance (1H NMR) plasma metabolomic and lipoproteomic profiles, capturing both tumor and host characteristics, to identify novel prognostic biomarkers of 2-year survival. Forty-five metastatic STS (mSTS) patients with prevalent leiomyosarcoma and liposarcoma histotypes receiving trabectedin treatment were enrolled. A score combining acetate, triglycerides low-density lipoprotein (LDL)-2, and red blood cell count was developed, and it predicts 2-year survival with optimal results in the present cohort (84.4% sensitivity, 84.6% specificity). This score is statistically significant and independent of other prognostic factors such as age, sex, tumor grading, tumor histotype, frailty status, and therapy administered. A nomogram based on these 3 biomarkers has been developed to inform the clinical use of the present findings.

5.
J Magn Reson ; 352: 107462, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37141802

RESUMO

NMR is a key technology for metabolomics because of its robustness and reproducibility. Herein we discuss practical considerations that extend the utility of NMR spectroscopy. First, the long T1 spin relaxation times of small molecules limits high-throughput data acquisition because most experimental time is lost while waiting for signal recovery. In principle, the addition of a small amount of commercially-available paramagnetic gadolinium chelate allows cost-effective and efficient high-throughput mixture analysis with correct concentration determination. However, idle time caused by slow temperature regulation during sample exchanges, poses a next constraint. We show how, with proper care, NMR sample scanning times can be reduced additionally by a factor of two. Lastly, we describe how equidistant bucketing is a simple and fast procedure for metabolomic fingerprinting. The combination of these advancements help to make NMR metabolomics more versatile than it is today.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Reprodutibilidade dos Testes , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Meios de Contraste
6.
Neoplasia ; 40: 100901, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058886

RESUMO

BACKGROUND: Approximately 95% of Colorectal cancers (CRC) consist of adenocarcinomas originating from colonic Adenomatous polyps (AP). Increasing importance in CRC occurrence and progression has been attributed to the gut microbiota; however, a huge proportion of microorganisms inhabit the human digestive system. So, to comprehensively study the microbial spatial variations and their role in CRC progression, from AP to the different CRC phases, a holistic vision is imperative, including the simultaneous evaluation of multiple niches from the gastrointestinal system. Through an integrated approach, we identified potential microbial and metabolic biomarkers, able to discriminate human CRC from AP and/or also the different Tumor node metastasis (TNM) staging. In addition, as the microbiota contributes to the production of essential metabolic products detectable in fecal samples, we analysed and compared metabolites obtained from CRC and AP patients by using a Nuclear magnetic resonance (NMR) approach. METHODS: In this observational study, saliva, tissue and stool samples from 61 patients, have been collected, including 46 CRC and 15 AP patients, age and sex-matched, undergoing surgery in 2018 at the Careggi University Hospital (Florence, Italy). First, the microbiota in the three-district between CRC and AP patients has been characterized, as well as in different CRC TNM stages. Subsequently, proton NMR spectroscopy has been used in combination with multivariate and univariate statistical approaches, to define the fecal metabolic profile of a restricted group of CRC and AP patients. RESULTS: CRC patients display a different profile of tissue and fecal microbiota with respect to AP patients. Significant differences have been observed in CRC tissue microbial clades, with a rise of the Fusobacterium genus. In addition, significant taxa increase at the genus level has been observed in stool samples of CRC patients. Furthermore, Fusobacterium found in intestinal tissue has been positively correlated with fecal Parvimonas, for the first time. Moreover, as predicted by metagenomics pathway analysis, a significant increase of lactate (p=0.037) has been observed in the CRC fecal metabolic profiles, and positively correlated with Bifidobacterium (p=0.036). Finally, minor bacterial differences in CRC patients at stage T2 (TNM classification) have been detected, with a raise of the Spirochaetota phylum in CRC samples, with a slight increase of the Alphaproteobacteria class in fecal samples. CONCLUSION: Our results suggest the importance of microbiota communities and oncometabolites in CRC development. Further studies on CRC/AP management with a focus on CRC assessment are needed to investigate novel microbial-related diagnostic tools aimed to improve therapeutic interventions.


Assuntos
Adenoma , Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Neoplasias Retais , Humanos , Neoplasias Colorretais/patologia , Adenoma/diagnóstico , Bactérias , Biomarcadores
7.
Front Mol Biosci ; 10: 1165720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968275

RESUMO

[This corrects the article DOI: 10.3389/fmolb.2022.1070394.].

8.
Metabolites ; 13(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837915

RESUMO

Colorectal cancer (CRC), one of the most prevalent and deadly cancers worldwide, generally evolves from adenomatous polyps. The understanding of the molecular mechanisms underlying this pathological evolution is crucial for diagnostic and prognostic purposes. Integrative systems biology approaches offer an optimal point of view to analyze CRC and patients with polyposis. The present study analyzed the association networks constructed from a publicly available array of 113 serum metabolites measured on a cohort of 234 subjects from three groups (66 CRC patients, 76 patients with polyposis, and 92 healthy controls), which concentrations were obtained via targeted liquid chromatography-tandem mass spectrometry. In terms of architecture, topology, and connectivity, the metabolite-metabolite association network of CRC patients appears to be completely different with respect to patients with polyposis and healthy controls. The most relevant nodes in the CRC network are those related to energy metabolism. Interestingly, phenylalanine, tyrosine, and tryptophan metabolism are found to be involved in both CRC and polyposis. Our results demonstrate that the characterization of metabolite-metabolite association networks is a promising and powerful tool to investigate molecular aspects of CRC.

9.
Transl Oncol ; 27: 101585, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403505

RESUMO

BACKGROUND: We previously showed that metabolomics predicts relapse in early breast cancer (eBC) patients, unselected by age. This study aims to identify a "metabolic signature" that differentiates eBC from advanced breast cancer (aBC) patients, and to investigate its potential prognostic role in an elderly population. METHODS: Serum samples from elderly breast cancer (BC) patients enrolled in 3 onco-geriatric trials, were retrospectively analyzed via proton nuclear magnetic resonance (1H NMR) spectroscopy. Three nuclear magnetic resonance (NMR) spectra were acquired for each serum sample: NOESY1D, CPMG, Diffusion-edited. Random Forest (RF) models to predict BC relapse were built on NMR spectra, and resulting RF risk scores were evaluated by Kaplan-Meier curves. RESULTS: Serum samples from 140 eBC patients and 27 aBC were retrieved. In the eBC cohort, median age was 76 years; 77% of patients had luminal, 10% HER2-positive and 13% triple negative (TN) BC. Forty-two percent of patients had tumors >2 cm, 43% had positive axillary nodes. Using NOESY1D spectra, the RF classifier discriminated free-from-recurrence eBC from aBC with sensitivity, specificity and accuracy of 81%, 67% and 70% respectively. We tested the NOESY1D spectra of each eBC patient on the RF models already calculated. We found that patients classified as "high risk" had higher risk of disease recurrence (hazard ratio (HR) 3.42, 95% confidence interval (CI) 1.58-7.37) than patients at low-risk. CONCLUSIONS: This analysis suggests that a "metabolic signature", identified employing NMR fingerprinting, is able to predict the risk of disease recurrence in elderly patients with eBC independently from standard clinicopathological features.

10.
Handb Exp Pharmacol ; 277: 209-245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36318327

RESUMO

The aim of this chapter is to highlight the various aspects of metabolomics in relation to health and diseases, starting from the definition of metabolic space and of how individuals tend to maintain their own position in this space. Physio-pathological stimuli may cause individuals to lose their position and then regain it, or move irreversibly to other positions. By way of examples, mostly selected from our own work using 1H NMR on biological fluids, we describe the effects on the individual metabolomic fingerprint of mild external interventions, such as diet or probiotic administration. Then we move to pathologies (such as celiac disease, various types of cancer, viral infections, and other diseases), each characterized by a well-defined metabolomic fingerprint. We describe the effects of drugs on the disease fingerprint and on its reversal to a healthy metabolomic status. Drug toxicity can be also monitored by metabolomics. We also show how the individual metabolomic fingerprint at the onset of a disease may discriminate responders from non-responders to a given drug, or how it may be prognostic of e.g., cancer recurrence after many years. In parallel with fingerprinting, profiling (i.e., the identification and quantification of many metabolites and, in the case of selected biofluids, of the lipoprotein components that contribute to the 1H NMR spectral features) can provide hints on the metabolic pathways that are altered by a disease and assess their restoration after treatment.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética
11.
J Proteome Res ; 22(1): 16-25, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36469426

RESUMO

Metabolic perturbations and inflammatory mediators play a fundamental role in both early and late adverse post-acute ischemic stroke outcomes. Using data from the observational MAGIC (MArker bioloGici nell'Ictus Cerebrale) study, we evaluated the effect of 130 serum metabolic features, using a nuclear magnetic spectroscopy approach, on the following outcomes: hemorrhagic transformation at 24 h after stroke, non-response to intravenous thrombolytic treatment with the recombinant tissue plasminogen activator (rt-PA), and the 3 month functional outcome. Blood circulating metabolites, lipoproteins, and inflammatory markers were assessed at the baseline and 24 h after rt-PA treatment. Adjusting for the major determinants for unfavorable outcomes (i.e., age, sex, time onset-to-treatment, etc.), we found that acetone and 3-hydroxybutyrate were associated with symptomatic hemorrhagic transformation and with non-response to rt-PA; while 24 h after rt-PA, levels of triglycerides high-density lipoprotein (HDL) and triglycerides low-density lipoprotein (LDL) were associated with 3 month mortality. Cholesterol and phospholipids levels, mainly related to smaller and denser very low-density lipoprotein (VLDL) and LDL subfractions were associated with 3 month poor functional outcomes. We also reported associations between baseline 24 h relative variation (Δ) in VLDL subfractions and ΔC-reactive protein, Δinterleukin-10 levels with hemorrhagic transformation. All observed metabolic changes reflect a general condition of energy failure, oxidative stress, and systemic inflammation that characterize the development of adverse outcomes.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Humanos , Isquemia Encefálica/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento
12.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203468

RESUMO

Reduced sperm motility and/or count are among the major causes of reduced fertility in men, and sperm membranes play an important role in the spermatogenesis and fertilization processes. However, the impact of sperm lipid composition on male fertility remains under-investigated. The aim of the present study was to perform a lipidomic analysis of human sperm membranes: we performed an untargeted analysis of membrane lipid composition in fertile (N = 33) and infertile subjects (N = 29). In parallel, we evaluated their serum lipid levels. Twenty-one lipids were identified by their mass/charge ratio and post-source decay spectra. Sulfogalactosylglycerolipid (SGG, seminolipid) was the most abundant lipid component in the membranes. In addition, we observed a significant proportion of PUFAs. Important differences have emerged between the fertile and infertile groups, leading to the identification of a lipid cluster that was associated with semen parameters. Among these, cholesterol sulfate, SGG, and PUFAs represented the most important predictors of semen quality. No association was found between the serum and sperm lipids. Dietary PUFAs and SGG have acknowledged antioxidant functions and could, therefore, represent sensitive markers of sperm quality and testicular function. Altogether, these results underline the important role of sperm membrane lipids, which act independently of serum lipids levels and may rather represent an independent marker of reproductive function.


Assuntos
Astenozoospermia , Análise do Sêmen , Humanos , Masculino , Sêmen , Lipidômica , Motilidade dos Espermatozoides , Espermatozoides , Lipídeos de Membrana , Análise por Conglomerados
13.
J Proteome Res ; 21(11): 2655-2663, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36255714

RESUMO

This study investigated the associations between the levels of 27 plasma metabolites, 114 lipoprotein parameters, determined using nuclear magnetic resonance spectroscopy, and the ABO blood groups and the Rhesus (Rh) blood system in a cohort of n = 840 Italian healthy blood donors of both sexes. We observed good multivariate discrimination between the metabolomic and lipoproteomic profiles of subjects with positive and negative Rh. In contrast, we did not observe significant discrimination for the ABO blood group pairwise comparisons, suggesting only slight metabolic differences between these group-specific metabolic profiles. We report univariate associations (P-value < 0.05) between the subfraction HDL1 related to Apo A1, the subfraction HDL2 related to cholesterol and phospholipids, and the particle number of LDL2 related to free cholesterol, cholesterol, phospholipids, and Apo B and the ABO blood groups; we observed association of the lipid main fraction LDL4 related to free cholesterol, triglycerides, and Apo B; creatine; the particle number of LDL5; the subfraction LDL5 related to Apo B; the particle number of LDL4; and the subfraction LDL4 related to Apo B with Rh blood factors. These results suggest blood group-dependent (re)shaping of lipoprotein metabolism in healthy subjects, which may provide relevant information to explain the differential susceptibility to certain diseases observed in different blood groups.


Assuntos
Sistema ABO de Grupos Sanguíneos , Lipoproteínas , Masculino , Feminino , Humanos , Voluntários Saudáveis , Apolipoproteínas B , Triglicerídeos , Colesterol , HDL-Colesterol
14.
Metallomics ; 14(5)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35451491

RESUMO

Hemodialysis (HD) represents a life-sustaining treatment for patients with end-stage renal disease. However, it is associated with several complications, including anemia. Erythropoiesis-stimulating agents (ESAs) are often administered to HD patients with renal anemia, but a relevant proportion of them fail to respond to the therapy. Since trace metals are involved in several biological processes and their blood levels can be altered by HD, we study the possible association between serum trace metal concentrations and ratios with the administration and response to ESA. For this study, data and sample information of 110 HD patients were downloaded from the UC San Diego Metabolomics Workbench public repository (PR000565). The blood serum levels (and ratios) of antimony, cadmium, copper, manganese, molybdenum, nickel, selenium, tin, and zinc were studied applying an omics statistical approach. The Random Forest model was able to discriminate between HD-dependent patients treated and not treated with ESAs, with an accuracy of 71.7% (95% CI 71.5-71.9%). Logistic regression analysis identifies alterations of Mn, Mo, Cd, Sn, and several of their ratios as characteristic of patients treated with ESAs. Moreover, patients with scarce response to ESAs were shown to be characterized by reduced Mn to Ni and Mn to Sb ratios. In conclusion, our results show that trace metals, in particular manganese, play a role in the mechanisms underlying the human response to ESAs, and if further confirmed, the re-equilibration of their physiological levels could contribute to a better management of HD patients, hopefully reducing their morbidity and mortality.


Assuntos
Anemia , Hematínicos , Oligoelementos , Hematínicos/uso terapêutico , Humanos , Manganês , Diálise Renal/efeitos adversos , Soro
15.
Front Cardiovasc Med ; 9: 851905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463749

RESUMO

Background: Heart failure (HF) is a leading cause of morbidity and mortality worldwide. Metabolomics may help refine risk assessment and potentially guide HF management, but dedicated studies are few. This study aims at stratifying the long-term risk of death in a cohort of patients affected by HF due to dilated cardiomyopathy (DCM) using serum metabolomics via nuclear magnetic resonance (NMR) spectroscopy. Methods: A cohort of 106 patients with HF due to DCM, diagnosed and monitored between 1982 and 2011, were consecutively enrolled between 2010 and 2012, and a serum sample was collected from each participant. Each patient underwent half-yearly clinical assessments, and survival status at the last follow-up visit in 2019 was recorded. The NMR serum metabolomic profiles were retrospectively analyzed to evaluate the patient's risk of death. Overall, 26 patients died during the 8-years of the study. Results: The metabolomic fingerprint at enrollment was powerful in discriminating patients who died (HR 5.71, p = 0.00002), even when adjusted for potential covariates. The outcome prediction of metabolomics surpassed that of N-terminal pro b-type natriuretic peptide (NT-proBNP) (HR 2.97, p = 0.005). Metabolomic fingerprinting was able to sub-stratify the risk of death in patients with both preserved/mid-range and reduced ejection fraction [hazard ratio (HR) 3.46, p = 0.03; HR 6.01, p = 0.004, respectively]. Metabolomics and left ventricular ejection fraction (LVEF), combined in a score, proved to be synergistic in predicting survival (HR 8.09, p = 0.0000004). Conclusions: Metabolomic analysis via NMR enables fast and reproducible characterization of the serum metabolic fingerprint associated with poor prognosis in the HF setting. Our data suggest the importance of integrating several risk parameters to early identify HF patients at high-risk of poor outcomes.

16.
J Proteome Res ; 21(4): 1061-1072, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271285

RESUMO

Blood derivatives are the biofluids of choice for metabolomic clinical studies since blood can be collected with low invasiveness and is rich in biological information. However, the choice of the blood collection tubes has an undeniable impact on the plasma and serum metabolic content. Here, we compared the metabolomic and lipoprotein profiles of blood samples collected at the same time and place from six healthy volunteers but using different collection tubes (each enrolled volunteer provided multiple blood samples at a distance of a few weeks/months): citrate plasma, EDTA plasma, and serum tubes. All samples were analyzed via nuclear magnetic resonance spectroscopy. Several metabolites showed statistically significant alterations among the three blood matrices, and also metabolites' correlations were shown to be affected. The effects of blood collection tubes on the lipoproteins' profiles are relevant too, but less marked. Overcoming the issue associated with different blood collection tubes is pivotal to scale metabolomics and lipoprotein analysis at the level of epidemiological studies based on samples from multicenter cohorts. We propose a statistical solution, based on regression, that is shown to be efficient in reducing the alterations induced by the different collection tubes for both the metabolomic and lipoprotein profiles.


Assuntos
Plasma , Soro , Coleta de Amostras Sanguíneas/métodos , Ácido Cítrico/metabolismo , Humanos , Metabolômica/métodos , Plasma/química , Soro/química
17.
NPJ Parkinsons Dis ; 8(1): 14, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136088

RESUMO

Parkinson's disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress.

18.
EBioMedicine ; 76: 103864, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35131692

RESUMO

INTRODUCTION: Body-mass index is a major determinant of left-ventricular-mass (LVM). Bariatric-metabolic surgery (BMS) reduces cardiovascular mortality. Its mechanism of action, however, often encompasses a weight-dependent effect. In this translational study, we aimed at investigating the mechanisms by which BMS leads to LVM reduction and functional improvement. METHODS: Twenty patients (45.2 ± 8.5years) were studied with echocardiography at baseline and at 1,6,12 and 48 months after sleeve-gastrectomy (SG). Ten Wistar rats aged 10-weeks received high-fat diet ad libitum for 10 weeks before and 4 weeks after SG or sham-operation. An oral-glucose-tolerance-test was performed to measure whole-body insulin-sensitivity. Plasma metabolomics was analysed in both human and rodent samples. RNA quantitative Real-Time PCR and western blots were performed in rodent heart biopsies. The best-fitted partial-least-square discriminant-analysis model was used to explore the variable importance in the projection score of all metabolites. FINDINGS: Echocardiographic LVM (-12%,-23%,-28% and -43% at 1,6,12 and 48 months, respectively) and epicardial fat decreased overtime after SG in humans while insulin-sensitivity improved. In rats, SG significantly reduced LVM and epicardial fat, enhanced ejection-fraction and improved insulin-sensitivity compared to sham-operation. Metabolomics showed a progressive decline of plasma branched-chain amino-acids (BCAA), alanine, lactate, 3-OH-butyrate, acetoacetate, creatine and creatinine levels in both humans and rodents. Hearts of SG rats had a more efficient BCAA, glucose and fatty-acid metabolism and insulin signaling than sham-operation. BCAAs in cardiomyocyte culture-medium stimulated lipogenic gene transcription and reduced mRNA levels of key mitochondrial ß-oxidation enzymes promoting lipid droplet accumulation and glycolysis. INTERPRETATION: After SG a prompt and sustained decrease of the LVM, epicardial fat and insulin resistance was found. Animal and in vitro studies showed that SG improves cardiac BCAA metabolism with consequent amelioration of fat oxidation and insulin signaling translating into decreased intra-myocytic fat accumulation and reduced lipotoxicity. FUNDING: This work was supported by the University of Rome Sapienza.


Assuntos
Cirurgia Bariátrica , Resistência à Insulina , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Gastrectomia , Humanos , Ratos , Ratos Wistar
19.
Geroscience ; 44(2): 1109-1128, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34324142

RESUMO

This study defines and estimates the metabolite-lipidic component association networks constructed from an array of 20 metabolites and 114 lipids identified and quantified via NMR spectroscopy in the serum of a cohort of 355 Italian nonagenarians and ultra-nonagenarian. Metabolite-lipid association networks were built for men and women and related to an array of 101 clinical and biochemical parameters, including the presence of diseases, bio-humoral parameters, familiarity diseases, drugs treatments, and risk factors. Different connectivity patterns were observed in lipids, branched chains amino acids, alanine, and ketone bodies, suggesting their association with the sex-related and sex-clinical condition-related intrinsic metabolic changes. Furthermore, our results demonstrate, using a holistic system biology approach, that the characterization of metabolic structures and their dynamic inter-connections is a promising tool to shed light on the dimorphic pathophysiological mechanisms of aging at the molecular level.


Assuntos
Metabolômica , Caracteres Sexuais , Idoso de 80 Anos ou mais , Feminino , Humanos , Lipídeos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Metabolômica/métodos , Nonagenários
20.
J Gerontol A Biol Sci Med Sci ; 77(5): 918-926, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34748631

RESUMO

In this study, we investigated how the concentrations, pairwise correlations and ratios of 202 free circulating blood metabolites and lipids vary with age in a panel of n = 1 882 participants with an age range from 48 to 94 years. We report a statistically significant sex-dependent association with age of a panel of metabolites and lipids involving, in women, linoleic acid, α-linoleic acid, and carnitine, and, in men, monoacylglycerols and lysophosphatidylcholines. Evaluating the association of correlations among metabolites and/or lipids with age, we found that phosphatidylcholines correlations tend to have a positive trend associated with age in women, and monoacylglycerols and lysophosphatidylcholines correlations tend to have a negative trend associated with age in men. The association of ratio between molecular features with age reveals that decanoyl-l-carnitine/lysophosphatidylcholine ratio in women "decrease" with age, while l-carnitine/phosphatidylcholine and l-acetylcarnitine/phosphatidylcholine ratios in men "increase" with age. These results suggest an age-dependent remodeling of lipid metabolism that induces changes in cell membrane bilayer composition and cell cycle mechanisms. Furthermore, we conclude that lipidome is directly involved in this age-dependent differentiation. Our results demonstrate that, using a comprehensive approach focused on the changes of concentrations and relationships of blood metabolites and lipids, as expressed by their correlations and ratios, it is possible to obtain relevant information about metabolic dynamics associated with age.


Assuntos
Lisofosfatidilcolinas , Monoglicerídeos , Idoso , Idoso de 80 Anos ou mais , Carnitina , Feminino , Humanos , Ácido Linoleico , Masculino , Fosfatidilcolinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA