Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Cardiovasc Res ; 119(7): 1553-1567, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951047

RESUMO

AIMS: Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS: Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS: This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF.


Assuntos
Acetato de Desoxicorticosterona , Insuficiência Cardíaca Sistólica , Insuficiência Cardíaca , Hipertensão , Ratos , Masculino , Animais , Fator B de Crescimento do Endotélio Vascular/metabolismo , Insuficiência Cardíaca Sistólica/complicações , Proteômica , Hipertensão/metabolismo , Miocárdio/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/complicações , Cardiomegalia/genética , Cardiomegalia/metabolismo
2.
Microcirculation ; 30(2-3): e12800, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702790

RESUMO

BACKGROUND AND AIMS: Acute myeloid leukemia (AML) is a heterogeneous malignant condition characterized by massive infiltration of poorly differentiated white blood cells in the blood stream, bone marrow, and extramedullary sites. During leukemic development, hepatosplenomegaly is expected to occur because large blood volumes are continuously filtered through these organs. We asked whether infiltration of leukemic blasts initiated a response that could be detected in the interstitial fluid phase of the spleen and liver. MATERIAL AND METHODS: We used a rat model known to mimic human AML in growth characteristics and behavior. By cannulating efferent lymphatic vessels from the spleen and liver, we were able to monitor the response of the microenvironment during AML development. RESULTS AND DISCUSSION: Flow cytometric analysis of lymphocytes showed increased STAT3 and CREB signaling in spleen and depressed signaling in liver, and proteins related to these pathways were identified with a different profile in lymph and plasma in AML compared with control. Additionally, several proteins were differently regulated in the microenvironment of spleen and liver in AML when compared with control. CONCLUSION: Interstitial fluid, and its surrogate efferent lymph, can be used to provide unique information about responses in AML-infiltered organs and substances released to the general circulation during leukemia development.


Assuntos
Leucemia Mieloide Aguda , Vasos Linfáticos , Animais , Humanos , Ratos , Medula Óssea/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Fígado/metabolismo , Vasos Linfáticos/metabolismo , Baço/metabolismo , Baço/patologia , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral
3.
J Intern Med ; 293(3): 293-308, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36385445

RESUMO

Estimation of kidney function is often part of daily clinical practice, mostly done by using the endogenous glomerular filtration rate (GFR)-markers creatinine or cystatin C. A recommendation to use both markers in parallel in 2010 has resulted in new knowledge concerning the pathophysiology of kidney disorders by the identification of a new set of kidney disorders, selective glomerular hypofiltration syndromes. These syndromes, connected to strong increases in mortality and morbidity, are characterized by a selective reduction in the glomerular filtration of 5-30 kDa molecules, such as cystatin C, compared to the filtration of small molecules <1 kDa dominating the glomerular filtrate, for example water, urea and creatinine. At least two types of such disorders, shrunken or elongated pore syndrome, are possible according to the pore model for glomerular filtration. Selective glomerular hypofiltration syndromes are prevalent in investigated populations, and patients with these syndromes often display normal measured GFR or creatinine-based GFR-estimates. The syndromes are characterized by proteomic changes promoting the development of atherosclerosis, indicating antibodies and specific receptor-blocking substances as possible new treatment modalities. Presently, the KDIGO guidelines for diagnosing kidney disorders do not recommend cystatin C as a general marker of kidney function and will therefore not allow the identification of a considerable number of patients with selective glomerular hypofiltration syndromes. Furthermore, as cystatin C is uninfluenced by muscle mass, diet or variations in tubular secretion and cystatin C-based GFR-estimation equations do not require controversial race or sex terms, it is obvious that cystatin C should be a part of future KDIGO guidelines.


Assuntos
Cistatina C , Nefropatias , Humanos , Proteoma , Creatinina , Proteômica , Taxa de Filtração Glomerular/fisiologia , Nefropatias/diagnóstico , Biomarcadores
4.
Hypertension ; 79(11): 2451-2462, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36043415

RESUMO

BACKGROUND: Recent studies have indicated that sodium storage is influenced by macrophages that secrete VEGF-C (vascular endothelial growth factor) during salt stress thus stimulating lymphangiogenesis, thereby acting as a buffer against increased blood pressure (BP). We aimed to explore the role of dermal lymphatics in BP and sodium homeostasis. Our hypothesis was that mice with reduced dermal lymphatic vessels were more prone to develop salt-sensitive hypertension, and that mice with hyperplastic vessels were protected. METHODS: Mice with either hypoplastic (Chy), absent (K14-VEGFR3 [vascular endothelial growth factor receptor 3]-Ig), or hyperplastic (K14-VEGF-C) dermal lymphatic vessels and littermate controls were given high-salt diet (4% NaCl in the chow), deoxycorticosterone acetate (DOCA)-salt diet and 1% saline to drink or nitric oxide blocker diet L-NG-nitro arginine methyl ester (followed by high salt diet). BP was measured by telemetric recording, and tissue sodium content by ion chromatography. RESULTS: In contrast to previous studies, high salt diet did not induce an increase in BP or sodium storage in any of the mouse strains investigated. DOCA-salt, on the other hand, gave an increase in BP in Chy and K14-VEGFR3-Ig not different from their corresponding WT controls. DOCA induced salt storage in skin and muscle, but to the same extent in mice with dysfunctional lymphatic vessels and WT controls. Lymph flow as assessed by tracer washout was not affected by the diet in any of the mouse strains. CONCLUSIONS: Our results suggest that dermal lymphatic vessels are not involved in salt storage or blood pressure regulation in these mouse models of salt-sensitive hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Camundongos , Animais , Pressão Sanguínea/fisiologia , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular , Modelos Animais de Doenças , Sódio , Engenharia Genética , Desoxicorticosterona/farmacologia
5.
J Physiol ; 600(10): 2293-2309, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35377950

RESUMO

Recently, studies have emerged suggesting that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. We investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. Na+ accumulation was induced in rats by a high salt diet (HSD) (8% NaCl and 1% saline to drink) or by implantation of a deoxycorticosterone acetate (DOCA) tablet (1% saline to drink) using rats on a low salt diet (LSD) (0.1% NaCl) on tap water as control. Na+ and K+ were assessed by ion chromatography in tissue eluates, and the extracellular volume by equilibration of 51 Cr-EDTA. By tangential sectioning of the skin, we found a low Na+ content and extracellular volume in epidermis, both parameters rising by ∼30% and 100%, respectively, in LSD and even more in HSD and DOCA when entering dermis. We found evidence for an extracellular Na+ gradient from epidermis to dermis shown by an estimated concentration in epidermis ∼2 and 4-5 times that of dermis in HSD and DOCA-salt. There was intracellular storage of Na+ in skin, muscle, and myocardium without a concomitant increase in hydration. Our data suggest that there is a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. Salt stress results in intracellular storage of Na+ in exchange with K+ in skeletal muscle and myocardium that may have electromechanical consequences. KEY POINTS: Studies have suggested that Na+ can be retained or removed without commensurate water retention or loss, and that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. In the present study, we investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. We used two common models for salt-sensitive hypertension: high salt and a deoxycorticosterone salt diet. We found a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. There was intracellular Na+ storage in muscle and myocardium without a concomitant increase in hydration, comprising storage that may have electromechanical consequences in salt stress.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Ratos , Pressão Sanguínea/fisiologia , Desoxicorticosterona/farmacologia , Eletrólitos , Glicosaminoglicanos , Íons , Ratos Sprague-Dawley , Sódio , Cloreto de Sódio , Água
6.
Pharmaceutics ; 13(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34959386

RESUMO

The goal of this study is to investigate the pharmacokinetics in plasma and tumour interstitial fluid of two T-cell bispecifics (TCBs) with different binding affinities to the tumour target and to assess the subsequent cytokine release in a tumour-bearing humanised mouse model. Pharmacokinetics (PK) as well as cytokine data were collected in humanised mice after iv injection of cibisatamab and CEACAM5-TCB which are binding with different binding affinities to the tumour antigen carcinoembryonic antigen (CEA). The PK data were modelled and coupled to a previously published physiologically based PK model. Corresponding cytokine release profiles were compared to in vitro data. The PK model provided a good fit to the data and precise estimation of key PK parameters. High tumour interstitial concentrations were observed for both TCBs, influenced by their respective target binding affinities. In conclusion, we developed a tailored experimental method to measure PK and cytokine release in plasma and at the site of drug action, namely in the tumour. Integrating those data into a mathematical model enabled to investigate the impact of target affinity on tumour accumulation and can have implications for the PKPD assessment of the therapeutic antibodies.

7.
Pflugers Arch ; 473(6): 897-910, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34028587

RESUMO

We discovered high Na+ and water content in the skin of newborn Sprague-Dawley rats, which reduced ~ 2.5-fold by 7 days of age, indicating rapid changes in extracellular volume (ECV). Equivalent changes in ECV post birth were also observed in C57Bl/6 J mice, with a fourfold reduction over 7 days, to approximately adult levels. This established the generality of increased ECV at birth. We investigated early sodium and water handling in neonates from a second rat strain, Fischer, and an Hsd11b2-knockout rat modelling the syndrome of apparent mineralocorticoid excess (SAME). Despite Hsd11b2-/- animals exhibiting lower skin Na+ and water levels than controls at birth, they retained ~ 30% higher Na+ content in their pelts at the expense of K+ thereafter. Hsd11b2-/- neonates exhibited incipient hypokalaemia from 15 days of age and became increasingly polydipsic and polyuric from weaning. As with adults, they excreted a high proportion of ingested Na+ through the kidney, (56.15 ± 8.21% versus control 34.15 ± 8.23%; n = 4; P < 0.0001), suggesting that changes in nephron electrolyte transporters identified in adults, by RNA-seq analysis, occur by 4 weeks of age. Our data reveal that Na+ imbalance in the Hsd11b2-/- neonate leads to excess Na+ storage in skin and incipient hypokalaemia, which, together with increased, glucocorticoid-induced Na+ uptake in the kidney, then contribute to progressive, volume contracted, salt-sensitive hypertension. Skin Na+ plays an important role in the development of SAME but, equally, may play a key physiological role at birth, supporting post-natal growth, as an innate barrier to infection or as a rudimentary kidney.


Assuntos
Pressão Sanguínea , Síndrome de Excesso Aparente de Minerolocorticoides/metabolismo , Pele/metabolismo , Sódio/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Excesso Aparente de Minerolocorticoides/genética , Síndrome de Excesso Aparente de Minerolocorticoides/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
8.
Sci Rep ; 11(1): 8487, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875683

RESUMO

All capillary endothelia, including those of the glomeruli, have a luminal cell surface layer (ESL) consisting of glycoproteins, glycolipids, proteoglycans (PGs) and glycosaminoglycans. Previous results have demonstrated that an intact ESL is necessary for a normal filtration barrier and damage to the ESL coupled to proteinuria is seen for example in diabetic kidney disease (DKD). We used the principles of ion exchange chromatography in vivo to elute the highly negatively charged components of the ESL with a 1 M NaCl solution in rats. Ultrastructural morphology and renal function were analyzed and 17 PGs and hyaluronan were identified in the ESL. The high salt solution reduced the glomerular ESL thickness, led to albuminuria and reduced GFR. To assess the relevance of ESL in renal disease the expression of PGs in glomeruli from DKD patients in a next generation sequencing cohort was investigated. We found that seven of the homologues of the PGs identified in the ESL from rats were differently regulated in patients with DKD compared to healthy subjects. The results show that proteoglycans and glycosaminoglycans are essential components of the ESL, maintaining the permselective properties of the glomerular barrier and thus preventing proteinuria.


Assuntos
Diabetes Mellitus/fisiopatologia , Nefropatias Diabéticas/patologia , Endotélio Vascular/patologia , Glomérulos Renais/patologia , Proteinúria/patologia , Proteoglicanas/metabolismo , Cloreto de Sódio/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Endotélio Vascular/metabolismo , Feminino , Taxa de Filtração Glomerular , Humanos , Glomérulos Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Proteinúria/etiologia , Proteinúria/metabolismo , Ratos
9.
Eur J Cell Biol ; 99(8): 151127, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33162173

RESUMO

Blood levels of cardiac troponins (cTn) and myoglobin are analysed when myocardial infarction (MI) is suspected. Here we describe a novel clearance mechanism for muscle proteins by muscle cells. The complete plasma clearance profile of cTn and myoglobin was followed in rats after intravenous or intermuscular injections and analysed by PET and fluorescence microscopy of muscle biopsies and muscle cells. Compared with intravenous injections, only 5 % of cTnT, 0.6 % of cTnI and 8 % of myoglobin were recovered in the circulation following intramuscular injection. In contrast, 47 % of the renal filtration marker FITC-sinistrin and 81 % of cTn fragments from MI-patients were recovered after intramuscular injection. In addition, PET and biopsy analysis revealed that cTn was taken up by the quadriceps muscle and both cTn and myoglobin were endocytosed by cultured muscle cells. This local clearance mechanism could possibly be the dominant clearance mechanism for cTn, myoglobin and other muscle damage biomarkers released by muscle cells.


Assuntos
Células Musculares/metabolismo , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Endocitose , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
10.
EBioMedicine ; 56: 102783, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32454402

RESUMO

BACKGROUND: The completeness of resection is a key prognostic indicator in patients with ovarian cancer, and the application of tumour-targeted fluorescence image-guided surgery (FIGS) has led to improved detection of peritoneal metastases during cytoreductive surgery. CD24 is highly expressed in ovarian cancer and has been shown to be a suitable biomarker for tumour-targeted imaging. METHODS: CD24 expression was investigated in cell lines and heterogenous patient-derived xenograft (PDX) tumour samples of high-grade serous ovarian carcinoma (HGSOC). After conjugation of the monoclonal antibody CD24 to the NIR dye Alexa Fluor 750 and the evaluation of the optimal pharmacological parameters (OV-90, n = 21), orthotopic HGSOC metastatic xenografts (OV-90, n = 16) underwent cytoreductive surgery with real-time feedback. The impact of intraoperative CD24-targeted fluorescence guidance was compared to white light and palpation alone, and the recurrence of disease was monitored post-operatively (OV-90, n = 12). CD24-AF750 was further evaluated in four clinically annotated orthotopic PDX models of metastatic HGSOC, to validate the translational potential for intraoperative guidance. FINDINGS: CD24-targeted intraoperative NIR FIGS significantly (47•3%) improved tumour detection and resection, and reduced the post-operative tumour burden compared to standard white-light surgery in orthotopic HGSOC xenografts. CD24-AF750 allowed identification of minuscule tumour lesions which were undetectable with the naked eye in four HGSOC PDX. INTERPRETATION: CD24-targeted FIGS has translational potential as an aid to improve debulking surgery of ovarian cancer. FUNDING: This study was supported by the H2020 program MSCA-ITN [675743], Helse Vest RHF, and Helse Bergen HF [911809, 911852, 912171, 240222, 911974, HV1269], as well as by The Norwegian Cancer Society [182735], and The Research Council of Norway through its Centres of excellence funding scheme [223250, 262652].


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno CD24/metabolismo , Cistadenocarcinoma Seroso/cirurgia , Neoplasias Ovarianas/cirurgia , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/cirurgia , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/diagnóstico por imagem , Procedimentos Cirúrgicos de Citorredução , Feminino , Humanos , Período Intraoperatório , Camundongos , Gradação de Tumores , Imagem Óptica , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/diagnóstico por imagem , Neoplasias Peritoneais/patologia , Succinimidas/química , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Eur J Oral Sci ; 128(3): 190-195, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32306433

RESUMO

We sought to investigate the transport route for protein-rich fluid from the apical area towards the draining lymph nodes. The first mandibular molar root canals in 24 female Wistar rats were instrumented and filled with radioactive-labelled human serum albumin. The rats were sacrificed at different intervals beginning after 10 min (time 0) and continuing up to 72 h. Three jaw segments, gingiva around the first molar, blood samples, submandibular and cervical lymph nodes were collected and analyzed for radioactivity. The starting volume of tracer (control) for all experiments was calculated from measurements at time 0. At time 0, radioactivity was only detected in the jaw segments. Within lymph nodes and serum, the tracer was found after 4 h, with the highest amount recorded in serum up to 24 h. Lymphatics were found within the mandibular canal along blood vessels and nerves and exiting via foramen mandibularis, after immunohistochemical staining in four untreated rats. Our results show tracer distribution from the apical area towards the mandibular canal in a posterior direction. The tracer washout rate was low, and the fluid was mainly absorbed into blood vessels. The lymphatics in the mandibular canal may be more important for immune cell transport than for fluid drainage.


Assuntos
Líquido Extracelular , Mandíbula , Animais , Cavidade Pulpar , Drenagem , Feminino , Humanos , Dente Molar , Ratos , Ratos Wistar , Ápice Dentário
12.
Sci Rep ; 10(1): 6791, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32322013

RESUMO

Cardiac-specific troponins (cTn), troponin T (cTnT) and troponin I (cTnI) are diagnostic biomarkers when myocardial infarction is suspected. Despite its clinical importance it is still not known how cTn is cleared once it is released from damaged cardiac cells. The aim of this study was to examine the clearance of cTn in the rat. A cTn preparation from pig heart was labeled with fluorescent dye or fluorine 18 (18 F). The accumulation of the fluorescence signal using organ extracts, or the 18 F signal using positron emission tomography (PET) was examined after a tail vein injection. The endocytosis of fluorescently labeled cTn was studied using a mouse hepatoma cell line. Close to 99% of the cTnT and cTnI measured with clinical immunoassays were cleared from the circulation two hours after a tail vein injection. The fluorescence signal from the fluorescently labeled cTn preparation and the radioactivity from the 18F-labeled cTn preparation mainly accumulated in the liver and kidneys. The fluorescently labeled cTn preparation was efficiently endocytosed by mouse hepatoma cells. In conclusion, we find that the liver and the kidneys are responsible for the clearance of cTn from plasma in the rat.


Assuntos
Rim/metabolismo , Fígado/metabolismo , Miocárdio/metabolismo , Troponina T/farmacocinética , Animais , Corantes Fluorescentes/química , Radioisótopos de Flúor/química , Masculino , Taxa de Depuração Metabólica , Tomografia por Emissão de Pósitrons/métodos , Ratos Endogâmicos WKY , Suínos , Troponina T/sangue , Troponina T/química
13.
Acta Physiol (Oxf) ; 229(1): e13442, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943825

RESUMO

AIM: The cAMP-mediator Epac1 (RapGef3) has high renal expression. Preliminary observations revealed increased diuresis in Epac1-/- mice. We hypothesized that Epac1 could restrict diuresis by promoting transcellular collecting duct (CD) water and urea transport or by stabilizing CD paracellular junctions to reduce osmolyte loss from the renal papillary interstitium. METHODS: In Epac1-/- and Wt C57BL/6J mice, renal papillae, dissected from snap-frozen kidneys, were assayed for the content of key osmolytes. Cell junctions were analysed by transmission electron microscopy. Urea transport integrity was evaluated by urea loading with 40% protein diet, endogenous vasopressin production was manipulated by intragastric water loading and moderate dehydration and vasopressin type 2 receptors were stimulated selectively by i.p.-injected desmopressin (dDAVP). Glomerular filtration rate (GFR) was estimated as [14 C]inulin clearance. The glomerular filtration barrier was evaluated by urinary albumin excretion and microvascular leakage by the renal content of time-spaced intravenously injected 125 I- and 131 I-labelled albumin. RESULTS: Epac1-/- mice had increased diuresis and increased free water clearance under antidiuretic conditions. They had shorter and less dense CD tight junction (TJs) and attenuated corticomedullary osmotic gradient. Epac1-/- mice had no increased protein diet-induced urea-dependent osmotic diuresis, and expressed Wt levels of aquaporin-2 (AQP-2) and urea transporter A1/3 (UT-A1/3). Epac1-/- mice had no urinary albumin leakage and unaltered renal microvascular albumin extravasation. Their GFR was moderately increased, unless when treated with furosemide. CONCLUSION: Our results conform to the hypothesis that Epac1-dependent mechanisms protect against diabetes insipidus by maintaining renal papillary osmolarity and the integrity of CD TJs.


Assuntos
Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/fisiopatologia , Deleção de Genes , Fatores de Troca do Nucleotídeo Guanina/deficiência , Túbulos Renais Coletores/fisiopatologia , Osmose , Junções Íntimas/patologia , Animais , Diabetes Insípido Nefrogênico/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/patologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Mol Cancer Ther ; 18(11): 2171-2181, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31467182

RESUMO

Patients with melanoma have a high risk of developing brain metastasis, which is associated with a dismal prognosis. During early stages of metastasis development, the blood-brain barrier (BBB) is likely intact, which inhibits sufficient drug delivery into the metastatic lesions. We investigated the ability of the peptide, K16ApoE, to permeabilize the BBB for improved treatment with targeted therapies preclinically. Dynamic contrast enhanced MRI (DCE-MRI) was carried out on NOD/SCID mice to study the therapeutic window of peptide-mediated BBB permeabilization. Further, both in vivo and in vitro assays were used to determine K16ApoE toxicity and to obtain mechanistic insight into its action on the BBB. The therapeutic impact of K16ApoE on metastases was evaluated combined with the mitogen-activated protein kinase pathway inhibitor dabrafenib, targeting BRAF mutated melanoma cells, which is otherwise known not to cross the intact BBB. Our results from the DCE-MRI experiments showed effective K16ApoE-mediated BBB permeabilization lasting for up to 1 hour. Mechanistic studies showed a dose-dependent effect of K16ApoE caused by induction of endocytosis. At concentrations above IC50, the peptide additionally showed nonspecific disturbances on plasma membranes. Combined treatment with K16ApoE and dabrafenib reduced the brain metastatic burden in mice and increased animal survival, and PET/CT showed that the peptide also facilitated the delivery of compounds with molecular weights as large as 150 kDa into the brain. To conclude, we demonstrate a transient permeabilization of the BBB, caused by K16ApoE, that facilitates enhanced drug delivery into the brain. This improves the efficacy of drugs that otherwise do not cross the intact BBB.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Imidazóis/administração & dosagem , Melanoma/tratamento farmacológico , Oximas/administração & dosagem , Peptídeos/administração & dosagem , Animais , Barreira Hematoencefálica/química , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Cães , Relação Dose-Resposta a Droga , Endocitose , Humanos , Imidazóis/farmacocinética , Células Madin Darby de Rim Canino , Melanoma/genética , Camundongos , Mutação , Oximas/farmacocinética , Peptídeos/farmacocinética , Proteínas Proto-Oncogênicas B-raf/genética , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Arterioscler Thromb Vasc Biol ; 38(9): 2054-2064, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30354256

RESUMO

Objective- A commonly accepted pivotal mechanism in fluid volume and blood pressure regulation is the parallel relationship between body Na+ and extracellular fluid content. Several recent studies have, however, shown that a considerable amount of Na+ can be retained in skin without commensurate water retention. Here, we asked whether a salt accumulation shown to result in VEGF (vascular endothelial growth factor)-C secretion and lymphangiogenesis had any influence on lymphatic function. Approach and Results- By optical imaging of macromolecular tracer washout in skin, we found that salt accumulation resulted in an increase in lymph flow of 26% that was noticeable only after including an overnight recording period. Surprisingly, lymph flow in skeletal muscle recorded with a new positron emission tomography/computed tomography method was also increased after salt exposure. The transcapillary filtration was unaffected by the high-salt diet and deoxycorticosterone-salt treatment, suggesting that the capillary barrier was not influenced by the salt accumulation. A significant reduction in lymph flow after depletion of macrophages/monocytes by clodronate suggests these cells are involved in the observed lymph flow response, together with collecting vessels shown here to enhance their contraction frequency as a response to extracellular Na+. Conclusions- The observed changes in lymph flow suggest that the lymphatics may influence long-term regulation of tissue fluid balance during salt accumulation by contributing to fluid homeostasis in skin and muscle. Our studies identify lymph clearance as a potential disease-modifying factor that might be targeted in conditions characterized by salt accumulation like chronic kidney disease and salt-sensitive hypertension.


Assuntos
Linfa/metabolismo , Linfangiogênese/efeitos dos fármacos , Músculo Esquelético/metabolismo , Pele/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Ácido Clodrônico/farmacologia , Linfa/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Sistema Fagocitário Mononuclear/efeitos dos fármacos , Sistema Fagocitário Mononuclear/metabolismo , Músculo Esquelético/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos Sprague-Dawley , Pele/diagnóstico por imagem , Fator C de Crescimento do Endotélio Vascular/metabolismo , Equilíbrio Hidroeletrolítico
16.
J Am Soc Nephrol ; 29(3): 857-868, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29237740

RESUMO

Collecting ducts make up the distal-most tubular segments of the kidney, extending from the cortex, where they connect to the nephron proper, into the medulla, where they release urine into the renal pelvis. During water deprivation, body water preservation is ensured by the selective transepithelial reabsorption of water into the hypertonic medullary interstitium mediated by collecting ducts. The collecting duct epithelium forms tight junctions composed of barrier-enforcing claudins and exhibits a higher transepithelial resistance than other segments of the renal tubule exhibit. However, the functional relevance of this strong collecting duct epithelial barrier is unresolved. Here, we report that collecting duct-specific deletion of an epithelial transcription factor, grainyhead-like 2 (GRHL2), in mice led to reduced expression of tight junction-associated barrier components, reduced collecting duct transepithelial resistance, and defective renal medullary accumulation of sodium and other osmolytes. In vitro, Grhl2-deficient collecting duct cells displayed increased paracellular flux of sodium, chloride, and urea. Consistent with these effects, Grhl2-deficient mice had diabetes insipidus, produced dilute urine, and failed to adequately concentrate their urine after water restriction, resulting in susceptibility to prerenal azotemia. These data indicate a direct functional link between collecting duct epithelial barrier characteristics, which appear to prevent leakage of interstitial osmolytes into urine, and body water homeostasis.


Assuntos
Epitélio/fisiologia , Túbulos Renais Coletores/fisiologia , Osmorregulação/genética , Junções Íntimas/genética , Junções Íntimas/fisiologia , Fatores de Transcrição/genética , Animais , Aquaporina 2/metabolismo , Aquaporina 4/metabolismo , Arginina Vasopressina/metabolismo , Azotemia/etiologia , Transporte Biológico/genética , Creatinina/urina , Perfilação da Expressão Gênica , Masculino , Camundongos , Concentração Osmolar , Transdução de Sinais , Ureia/metabolismo , Urina , Água/metabolismo , Privação de Água/fisiologia
17.
Arterioscler Thromb Vasc Biol ; 37(11): 2128-2135, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28935759

RESUMO

OBJECTIVE: Lymphatic vessels play an important role in body fluid, as well as immune system homeostasis. Although the role of malfunctioning or missing lymphatics has been studied extensively, less is known on the functional consequences of a chronically expanded lymphatic network or lymphangiogenesis. APPROACH AND RESULTS: To this end, we used K14-VEGF-C (keratin-14 vascular endothelial growth factor-C) transgenic mice overexpressing the vascular endothelial growth factor C in skin and investigated the responses to inflammatory and fluid volume challenges. We also recorded interstitial fluid pressure, a major determinant of lymph flow. Transgenic mice had a strongly enhanced lymph vessel area in skin. Acute inflammation induced by lipopolysaccharide and chronic inflammation by delayed-type hypersensitivity both resulted in increased interstitial fluid pressure and reduced lymph flow, both to the same extent in wild-type and transgenic mice. Hyperplastic lymphatic vessels, however, demonstrated enhanced transport capacity after local fluid overload not induced by inflammation. In this situation, interstitial fluid pressure was increased to a similar extent in the 2 strains, thus, suggesting that the enhanced lymph vessel area facilitated initial lymph formation. The increased lymph vessel area resulted in an enhanced production of the chemoattractant CCL21 that, however, did not result in augmented dendritic cell migration after induction of local skin inflammation by fluorescein isothiocyanate. CONCLUSIONS: An expanded lymphatic network is capable of enhanced chemoattractant production, and lymphangiogenesis will facilitate initial lymph formation favoring increased clearance of fluid in situations of augmented fluid filtration.


Assuntos
Quimiocina CCL21/metabolismo , Quimiotaxia , Células Dendríticas/metabolismo , Dermatite Alérgica de Contato/metabolismo , Linfa/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Animais , Dermatite Alérgica de Contato/genética , Dermatite Alérgica de Contato/patologia , Dermatite Alérgica de Contato/fisiopatologia , Modelos Animais de Doenças , Líquido Extracelular/metabolismo , Feminino , Deslocamentos de Líquidos Corporais , Fluoresceína-5-Isotiocianato , Genótipo , Queratina-14/genética , Lipopolissacarídeos , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Linfedema/genética , Linfedema/patologia , Linfedema/fisiopatologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Oxazolona , Fenótipo , Pressão , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Tempo , Regulação para Cima , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
18.
J Physiol ; 595(24): 7311-7330, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28960303

RESUMO

KEY POINTS: For therapeutic antibodies, total tissue concentrations are frequently reported as a lump sum measure of the antibody in residual plasma, interstitial fluid and cells. In terms of correlating antibody exposure to a therapeutic effect, however, interstitial pharmacokinetics might be more relevant. In the present study, we collected total tissue and interstitial antibody biodistribution data in mice and assessed the composition of tissue samples aiming to correct total tissue measurements for plasma and cellular content. All data and parameters were integrated into a refined physiologically-based pharmacokinetic model for monoclonal antibodies to enable the tissue-specific description of antibody pharmacokinetics in the interstitial space. We found that antibody interstitial concentrations are highly tissue-specific and dependent on the underlying capillary structure but, in several tissues, they reach relatively high interstitial concentrations, contradicting the still-prevailing view that both the distribution to tissues and the interstitial concentrations for antibodies are generally low. ABSTRACT: For most therapeutic antibodies, the interstitium is the target space. Although experimental methods for measuring antibody pharmacokinetics (PK) in this space are not well established, thus making quantitative assessment difficult, the interstitial antibody concentration is assumed to be low. In the present study, we combined direct quantification of antibodies in the interstitial fluid with a physiologically-based PK (PBPK) modelling approach, with the aim of better describing the PK of monoclonal antibodies in the interstitial space of different tissues. We isolated interstitial fluid by tissue centrifugation and conducted an antibody biodistribution study in mice, measuring total tissue and interstitial concentrations in selected tissues. Residual plasma, interstitial volumes and lymph flows, which are important PBPK model parameters, were assessed in vivo. We could thereby refine the PBPK modelling of monoclonal antibodies, better interpret antibody biodistribution data and more accurately predict their PK in the different tissue spaces. Our results indicate that, in tissues with discontinuous capillaries (liver and spleen), interstitial concentrations are reflected by the plasma concentration. In tissues with continuous capillaries (e.g. skin and muscle), ∼50-60% of the plasma concentration is found in the interstitial space. In the brain and kidney, on the other hand, antibodies are restricted to the vascular space. Our data may significantly impact the interpretation of biodistribution data of monoclonal antibodies and might be important when relating measured concentrations to a therapeutic effect. By contrast to the view that the antibody distribution to the interstitial space is limited, using direct measurements and model-based data interpretation, we show that high antibody interstitial concentrations are reached in most tissues.


Assuntos
Anticorpos Monoclonais/farmacocinética , Líquido Extracelular/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Vasos Sanguíneos/metabolismo , Feminino , Interleucina-17/imunologia , Fígado/metabolismo , Masculino , Camundongos , Baço/metabolismo , Distribuição Tecidual
19.
Hypertension ; 69(4): 660-668, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167686

RESUMO

The common notion is that the body Na+ is maintained within narrow limits for fluid and blood pressure homeostasis. Several studies have, however, shown that considerable amounts of Na+ can be retained or removed from the body without commensurate water loss and that the skin can serve as a major salt reservoir. Our own data from rats have suggested that the skin is hypertonic compared with plasma on salt storage and that this also applies to skin interstitial fluid. Even small electrolyte gradients between plasma and interstitial fluid would represent strong edema-generating forces. Because the water accumulation has been shown to be modest, we decided to reexamine with alternative methods in rats whether interstitial fluid is hypertonic during salt accumulation induced by high-salt diet (8% NaCl and 1% saline to drink) or deoxycorticosterone pellet implantation. These treatments resulted both in increased systemic blood pressure, skin salt, and water accumulation and in skin hyperosmolality. Interstitial fluid isolated from implanted wicks and lymph draining the skin was, however, isosmotic, and Na+ concentration in fluid isolated by centrifugation and in lymph was not different from plasma. Interestingly, by eluting layers of the skin, we could show that there was an osmolality and urea gradient from epidermis to dermis. Collectively, our data suggest that fluid leaving the skin as lymph is isosmotic to plasma but also that the skin can differentially control its own electrolyte microenvironment by creating local gradients that may be functionally important.


Assuntos
Pressão Sanguínea/fisiologia , Líquido Extracelular/metabolismo , Hipertensão/metabolismo , Linfa/metabolismo , Pele/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Desequilíbrio Hidroeletrolítico/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Equilíbrio Hidroeletrolítico , Desequilíbrio Hidroeletrolítico/complicações
20.
Nephron ; 132(1): 70-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26745798

RESUMO

BACKGROUND: Tubular atrophy and interstitial fibrosis mark the final stage in most forms of progressive kidney diseases. Little is known regarding changes in the tubular proteome. In this study, we investigated changes in the tubular proteome of normal or minimally damaged tubular tissue in the non-clipped kidney from rats with two-kidney one-clip (2K1C) hypertension. METHODS: Formalin-fixed paraffin-embedded kidney sections from four 2K1C rats with hypertensive kidney damage and 6 sham rats were used. Tubulointerstitial tissue without discernable interstitial expansion or pronounced tubular alterations was microdissected and this was assumed to represent an early stage of chronic tubular damage in 2K1C. Samples were analyzed by mass spectrometry and relative protein abundances were compared between 2K1C and sham. RESULTS: A total of 1,160 proteins were identified with at least 2 unique peptides, allowing for relative quantitation between samples. Among these, 151 proteins were more abundant, and 192 proteins were less abundant in 2K1C compared with sham. Transgelin, vimentin and creatine kinase B-type were among the proteins that were most increased in 2K1C. Ingenuity Pathway Analysis showed increased abundance of proteins related to Rho signaling and protein turnover (eIF2 signaling and protein ubiquitination), and decreased abundance of proteins related to fatty acid ß-oxidation. CONCLUSION: Tubular tissue from normal or minimally damaged hypertensive kidney damage demonstrate extensive proteomic changes with upregulation of pathways associated with progressive kidney damage, such as Rho signaling and protein turnover. Thus, proteomics presents itself to be a promising tool for the discovery of early damage markers from not yet morphologically visible tubular damage.


Assuntos
Hipertensão Renovascular/genética , Hipertensão Renovascular/metabolismo , Rim/patologia , Proteômica , Animais , Pressão Sanguínea , Túbulos Renais/patologia , Masculino , Tamanho do Órgão , Proteinúria/genética , Proteinúria/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA