RESUMO
This study assesses whether the effective number of breeders (Nb ) can be estimated using a time and cost-effective protocol using genetic sibship reconstruction from a single sample of young-of-the-year (YOY) for the purposes of Atlantic salmon Salmo salar population monitoring. Nb was estimated for 10 consecutive reproductive seasons for S. salar in the River Nivelle, a small population located at the rear-edge of the species distribution area in France, chronically under its conservation limit and subjected to anthropogenic and environmental changes. Subsampling of real and simulated data showed that accurate estimates of Nb can be obtained from YOY genotypes, collected at moderate random sampling intensity, achievable using routine juvenile electrofishing protocols. Spatial bias and time elapsed since spawning were found to affect estimates, which must be accounted for in sampling designs. Nb estimated in autumn for S. salar in the River Nivelle was low and variable across years from 23 (95% C.I. 14-41) to 75 (53-101) and was not statistically correlated with the estimated number of returning adults, but it was positively correlated with the estimated number of YOY at age 9 months. Nb was found to be lower for intermediate levels of redd aggregation, suggesting that the strength of the competition between males to access females affects reproductive success variance depending on redd spatial configuration. Thus, environmental factors such as habitat availability and quality for spawning and YOY development predominate over demographic ones (number of returning adults) in driving long-term population viability for S. salar in the River Nivelle. This study showcases Nb as an integrated parameter, encompassing demographic and ecological information about a reproductive event, relevant to the assessment of both short-term effects of management practices and long-term population conservation status.
Assuntos
Conservação dos Recursos Naturais , Reprodução , Salmo salar/fisiologia , Animais , Ecossistema , Feminino , França , Genética Populacional , Genótipo , Masculino , RiosRESUMO
This study aimed to test mate choice and selection during early life stages on major histocompatibility (MH) genotype in natural families of Atlantic salmon Salmo salar spawners and juveniles, using nine microsatellites to reconstruct families, one microsatellite linked to an MH class I gene and one minisatellite linked to an MH class II gene. MH-based mate choice was only detected for the class I locus on the first year, with lower expected heterozygosity in the offspring of actually mated pairs than predicted under random mating. The genotype frequencies of MH-linked loci observed in the juveniles were compared with frequencies expected from Mendelian inheritance of parental alleles to detect selection during early life stages. No selection was detected on the locus linked to class I gene. For the locus linked to class II gene, observed heterozygosity was higher than expected in the first year and lower in the second year, suggesting overdominance and underdominance, respectively. Within family, juveniles' body size was linked to heterozygosity at the same locus, with longer heterozygotes in the first year and longer homozygotes in the second year. Selection therefore seems to differ from one locus to the other and from year to year.
Assuntos
Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/fisiologia , Preferência de Acasalamento Animal/fisiologia , Salmo salar/genética , Salmo salar/fisiologia , Alelos , Animais , Regulação da Expressão Gênica/fisiologia , Genótipo , Heterozigoto , Homozigoto , Repetições de MicrossatélitesRESUMO
Assortative mating is thought to play a key role in reproductive isolation. However, most experimental studies of assortative mating do not take place in multiple natural environments, and hence, they ignore its potential context dependence. We implemented an experiment in which two populations of brown trout (Salmo trutta) with different natural flow regimes were placed into semi-natural stream channels under two different artificial flow regimes. Natural reproduction was allowed, and reproductive isolation was measured by means of parentage assignment to compare within-population vs. between-population male-female mating and relative offspring production. For both metrics, reproductive isolation was highly context dependent: no isolation was evident under one flow regime, but strong isolation was evident under the other flow regime. These patterns were fully driven by variance in the mating success of males from one of the two populations. Our results highlight how reproductive isolation through assortative mating can be strongly context dependent, which could have dramatic consequences for patterns of gene flow and speciation under environmental change.