Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 14(25): 8901-8905, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35719059

RESUMO

The supramolecular organization of Doxorubicin (DOX) within the standard Doxoves® liposomal formulation (DOX®) is investigated using visible light and phasor approach to fluorescence lifetime imaging (phasor-FLIM). First, the phasor-FLIM signature of DOX® is resolved into the contribution of three co-existing fluorescent species, each with its characteristic mono-exponential lifetime, namely: crystallized DOX (DOXc, 0.2 ns), free DOX (DOXf, 1.0 ns), and DOX bound to the liposomal membrane (DOXb, 4.5 ns). Then, the exact molar fractions of the three species are determined by combining phasor-FLIM with quantitative absorption/fluorescence spectroscopy on DOXc, DOXf, and DOXb pure standards. The final picture on DOX® comprises most of the drug in the crystallized form (∼98%), with the remaining fractions divided between free (∼1.4%) and membrane-bound drug (∼0.7%). Finally, phasor-FLIM in the presence of a DOX dynamic quencher allows us to suggest that DOXf is both encapsulated and non-encapsulated, and that DOXb is present on both liposome-membrane leaflets. We argue that the present experimental protocol can be applied to the investigation of the supramolecular organization of encapsulated luminescent drugs/molecules all the way from the production phase to their state within living matter.


Assuntos
Doxorrubicina , Polietilenoglicóis , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Lipossomos , Microscopia de Fluorescência/métodos
2.
Nanomaterials (Basel) ; 10(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751061

RESUMO

Liposomal doxorubicin (L-DOX) is a popular drug formulation for the treatment of several cancer types (e.g., recurrent ovarian cancer, metastatic breast cancer, multiple myeloma, etc.), but poor nuclear internalization has hampered its clinical applicability so far. Therefore, novel drug-delivery nanosystems are actively researched in cancer chemotherapy. Here we demonstrate that DOX-loaded graphene oxide (GO), GO-DOX, exhibits much higher anticancer efficacy as compared to its L-DOX counterpart if administered to cellular models of breast cancer. Then, by a combination of live-cell confocal imaging and fluorescence lifetime imaging microscopy (FLIM), we suggest that GO-DOX may realize its superior performances by inducing massive intracellular DOX release (and its subsequent nuclear accumulation) upon binding to the cell plasma membrane. Reported results lay the foundation for future exploitation of these new adducts as high-performance nanochemotherapeutic agents.

3.
Nanomaterials (Basel) ; 8(12)2018 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30558369

RESUMO

This work reports the synthesis of a novel gemini cationic lipid that incorporates two histidine-type head groups (C3(C16His)2). Mixed with a helper lipid 1,2-dioleoyl-sn-glycero-3-phosphatidyl ethanol amine (DOPE), it was used to transfect three different types of plasmid DNA: one encoding the green fluorescence protein (pEGFP-C3), one encoding a luciferase (pCMV-Luc), and a therapeutic anti-tumoral agent encoding interleukin-12 (pCMV-IL12). Complementary biophysical experiments (zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and fluorescence anisotropy) and biological studies (FACS, luminometry, and cytotoxicity) of these C3(C16His)2/DOPE-pDNA lipoplexes provided vast insight into their outcomes as gene carriers. They were found to efficiently compact and protect pDNA against DNase I degradation by forming nanoaggregates of 120⁻290 nm in size, which were further characterized as very fluidic lamellar structures based in a sandwich-type phase, with alternating layers of mixed lipids and an aqueous monolayer where the pDNA and counterions are located. The optimum formulations of these nanoaggregates were able to transfect the pDNAs into COS-7 and HeLa cells with high cell viability, comparable or superior to that of the standard Lipo2000*. The vast amount of information collected from the in vitro studies points to this histidine-based lipid nanocarrier as a potentially interesting candidate for future in vivo studies investigating specific gene therapies.

4.
ACS Appl Mater Interfaces ; 10(27): 22951-22962, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29905462

RESUMO

More than 20 years after its approval by the Food and Drug Administration (FDA), liposomal doxorubicin (DOX) is still the drug of choice for the treatment of breast cancer and other conditions such as ovarian cancer and multiple myeloma. Yet, despite the efforts, liposomal DOX did not satisfy expectations at the clinical level. When liposomal drugs enter a physiological environment, their surface gets coated by a dynamic biomolecular corona (BC). The BC changes liposome's synthetic identity, providing it with a new one, referred to as "biological identity" (size, aggregation state, and BC composition). Today, the concept is emerging that specific BCs may determine either success (e.g., stealth effect and accumulation at the target site) or failure (e.g., rapid blood clearance and off-target interactions) of liposomal drugs. To get a comprehensive investigation of liposome synthetic identity, biological identity, and cellular response as a function of human plasma (HP) concentration, here we used a straightforward combination of quantitative analytical and imaging tools, including dynamic light scattering, microelectrophoresis, synchrotron small-angle X-ray scattering, transmission electron microscopy (TEM), fluorescence lifetime imaging microscopy (FLIM), nano-liquid chromatography tandem mass spectrometry/mass spectrometry (nano-LC-MS/MS), confocal microscopy, flow cytometry, and cell viability assays. Doxoves was selected as a reference. Following exposure to HP, Doxoves was surrounded by a complex BC that changed liposome's synthetic identity. Observations made with nano-LC-MS/MS revealed that the BC of Doxoves did not evolve as a function of HP concentration and was poorly enriched of typical "opsonins" (complement proteins, immunoglobulins, etc.). This provides a possible explanation for the prolonged blood circulation of liposomal DOX. On the other hand, flow cytometry showed that protein binding reduced the internalization of DOX in MCF7 and MDA-MB-435S human breast carcinoma. Combining FLIM and TEM experiments, we clarified that reduction in DOX intracellular content was likely due to the frequent rupture of the liposome membrane and consequent leakage of the cargo. In light of reported results, we are prompted to speculate that a detailed understanding of BC formation, composition, and effects on liposome stability and uptake is an indispensable task of future research in the field, especially along the way to clinical translation of liposomal drugs.


Assuntos
Antineoplásicos , Proteínas Sanguíneas , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Antineoplásicos/química , Antineoplásicos/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/metabolismo , Humanos , Lipossomos , Células MCF-7 , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo
5.
Sci Rep ; 7(1): 14836, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093485

RESUMO

Here we provide demonstration that image mean square displacement (iMSD) analysis is a fast and robust platform to address living matter dynamic organization at the level of sub-cellular nanostructures (e.g. endocytic vesicles, early/late endosomes, lysosomes), with no a-priori knowledge of the system, and no need to extract single trajectories. From each iMSD, a unique triplet of average parameters (namely: diffusivity, anomalous coefficient, size) are extracted and represented in a 3D parametric space, where clustering of single-cell points readily defines the structure "dynamic fingerprint", at the whole-cell-population level. We demonstrate that different sub-cellular structures segregate into separate regions of the parametric space. The potency of this approach is further proved through application to two exemplary, still controversial, cases: i) the intracellular trafficking of lysosomes, comprising both free diffusion and directed motion along cytoskeletal components, and ii) the evolving dynamic properties of macropinosomes, passing from early to late stages of intracellular trafficking. We strongly believe this strategy may represent a flexible, multiplexed platform to address the dynamic properties of living matter at the sub-cellular level, both in the physiological and pathological state.


Assuntos
Endocitose , Endossomos/metabolismo , Lisossomos/metabolismo , Difusão , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador/métodos , Cinética , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA