Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(35): 10962-6, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26240365

RESUMO

Pacific salmon are a dominant component of the northeast Pacific ecosystem. Their status is of concern because salmon abundance is highly variable--including protected stocks, a recently closed fishery, and actively managed fisheries that provide substantial ecosystem services. Variable ocean conditions, such as the Pacific Decadal Oscillation (PDO), have influenced these fisheries, while diminished diversity of freshwater habitats have increased variability via the portfolio effect. We address the question of how recent changes in ocean conditions will affect populations of two salmon species. Since the 1980s, El Niño Southern Oscillation (ENSO) events have been more frequently associated with central tropical Pacific warming (CPW) rather than the canonical eastern Pacific warming ENSO (EPW). CPW is linked to the North Pacific Gyre Oscillation (NPGO), whereas EPW is linked to the PDO, different indicators of northeast Pacific Ocean ecosystem productivity. Here we show that both coho and Chinook salmon survival rates along western North America indicate that the NPGO, rather than the PDO, explains salmon survival since the 1980s. The observed increase in NPGO variance in recent decades was accompanied by an increase in coherence of local survival rates of these two species, increasing salmon variability via the portfolio effect. Such increases in coherence among salmon stocks are usually attributed to controllable freshwater influences such as hatcheries and habitat degradation, but the unknown mechanism underlying the ocean climate effect identified here is not directly subject to management actions.


Assuntos
Mudança Climática , Salmão , Animais , Oceano Pacífico , Taxa de Sobrevida
2.
PLoS One ; 5(5): e10756, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20526356

RESUMO

Directed fishing effort for Atlantic bluefin tuna in the Gulf of Mexico (GOM), their primary spawning grounds in the western Atlantic, has been prohibited since the 1980s due to a precipitous decline of the spawning stock biomass. However, pelagic longlines targeted at other species, primarily yellowfin tuna and swordfish, continue to catch Atlantic bluefin tuna in the GOM as bycatch. Spatial and temporal management measures minimizing bluefin tuna bycatch in the GOM will likely become important in rebuilding the western Atlantic bluefin stock. In order to help inform management policy and understand the relative distribution of target and bycatch species in the GOM, we compared the spatiotemporal variability and environmental influences on the catch per unit effort (CPUE) of yellowfin (target) and bluefin tuna (bycatch). Catch and effort data from pelagic longline fisheries observers (1993-2005) and scientific tagging cruises (1998-2002) were coupled with environmental and biological data. Negative binomial models were used to fit the data for both species and Akaike's Information Criterion (corrected for small sample size) was used to determine the best model. Our results indicate that bluefin CPUE had higher spatiotemporal variability as compared to yellowfin CPUE. Bluefin CPUE increased substantially during the breeding months (March-June) and peaked in April and May, while yellowfin CPUE remained relatively high throughout the year. In addition, bluefin CPUE was significantly higher in areas with negative sea surface height anomalies and cooler sea surface temperatures, which are characteristic of mesoscale cyclonic eddies. In contrast, yellowfin CPUE was less sensitive to environmental variability. These differences in seasonal variability and sensitivity to environmental influences suggest that bluefin tuna bycatch in the GOM can be reduced substantially by managing the spatial and temporal distribution of the pelagic longline effort without substantially impacting yellowfin tuna catches.


Assuntos
Ecossistema , Pesqueiros , Atum , Animais , Geografia , México , Modelos Teóricos , Oceanos e Mares
3.
PLoS One ; 4(7): e6151, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19582150

RESUMO

Electronic tags were used to examine the seasonal movements, aggregations and diving behaviors of Atlantic bluefin tuna (Thunnus thynnus) to better understand their migration ecology and oceanic habitat utilization. Implantable archival tags (n = 561) were deployed in bluefin tuna from 1996 to 2005 and 106 tags were recovered. Movement paths of the fish were reconstructed using light level and sea-surface-temperature-based geolocation estimates. To quantify habitat utilization we employed a weighted kernel estimation technique that removed the biases of deployment location and track length. Throughout the North Atlantic, high residence times (167+/-33 days) were identified in four spatially confined regions on a seasonal scale. Within each region, bluefin tuna experienced distinct temperature regimes and displayed different diving behaviors. The mean diving depths within the high-use areas were significantly shallower and the dive frequency and the variance in internal temperature significantly higher than during transit movements between the high-use areas. Residence time in the more northern latitude high-use areas was significantly correlated with levels of primary productivity. The regions of aggregation are associated with areas of abundant prey and potentially represent critical foraging habitats that have seasonally abundant prey. Throughout the North Atlantic mean diving depth was significantly correlated with the depth of the thermocline, and dive behavior changed in relation to the stratification of the water column. In this study, with numerous multi-year tracks, there appear to be repeatable patterns of clear aggregation areas that potentially are changing with environmental conditions. The high concentrations of bluefin tuna in predictable locations indicate that Atlantic bluefin tuna are vulnerable to concentrated fishing efforts in the regions of foraging aggregations.


Assuntos
Migração Animal , Comportamento Animal , Mergulho , Estações do Ano , Atum/fisiologia , Animais
4.
Nature ; 434(7037): 1121-7, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858572

RESUMO

Electronic tags that archive or transmit stored data to satellites have advanced the mapping of habitats used by highly migratory fish in pelagic ecosystems. Here we report on the electronic tagging of 772 Atlantic bluefin tuna in the western Atlantic Ocean in an effort to identify population structure. Reporting electronic tags provided accurate location data that show the extensive migrations of individual fish (n = 330). Geoposition data delineate two populations, one using spawning grounds in the Gulf of Mexico and another from the Mediterranean Sea. Transatlantic movements of western-tagged bluefin tuna reveal site fidelity to known spawning areas in the Mediterranean Sea. Bluefin tuna that occupy western spawning grounds move to central and eastern Atlantic foraging grounds. Our results are consistent with two populations of bluefin tuna with distinct spawning areas that overlap on North Atlantic foraging grounds. Electronic tagging locations, when combined with US pelagic longline observer and logbook catch data, identify hot spots for spawning bluefin tuna in the northern slope waters of the Gulf of Mexico. Restrictions on the time and area where longlining occurs would reduce incidental catch mortalities on western spawning grounds.


Assuntos
Sistemas de Identificação Animal/métodos , Migração Animal , Eletrônica , Atum/fisiologia , Sistemas de Identificação Animal/instrumentação , Animais , Oceano Atlântico , Meio Ambiente , Comportamento Alimentar/fisiologia , Mar Mediterrâneo , México , Dinâmica Populacional , Reprodução/fisiologia , Água do Mar , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA