Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ther Innov Regul Sci ; 55(3): 583-590, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33439461

RESUMO

BACKGROUND: Quality by Design (QbD) is a systematic risk-based approach to development, with predefined characteristics and quality risk management throughout the life cycle of a product. International Conference on Harmonization (ICH) guidelines Q8-Q11 give guidance on QbD applications with ICH Q8 (R2)-approved in 2009-describing the principles of QbD in detail. Since its adoption over 10 years ago, more information about QbD usage for the development of medicinal products is expected to be written in regulatory dossiers by companies. METHODS: The present study set out to evaluate the implementation of QbD principles and elements in all EU approved marketing applications (MA) (n = 494), based on information available in the European Public Assessment Reports (EPARs), for a period of six years (2014-2019), starting 5 years after QbD adoption. RESULTS: Of the 494 MAs, 271 were submitted with a full dossier (article 8(3)). According to EMA (38%), out of the 271 full dossier submissions, only 104 were developed using full QbD. This figure did not increase during this period. Interestingly, between 2014 and 2019, several MAs were not developed via full QbD implementation but used one or more QbD elements during development, including design space. In addition, a higher percentage of small molecule products were developed with QbD as opposed to biotechnology-derived products (78% vs. 22%, respectively). CONCLUSION: Overall, QbD during development of medicinal products is still not commonly described in dossiers. However, more companies started mentioning QbD elements, thus making it a promising step toward QbD as the standard for development in the future.


Assuntos
Biotecnologia , Gestão de Riscos , União Europeia , Marketing
2.
Neurobiol Learn Mem ; 133: 30-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27246249

RESUMO

Early life adversity can have long-lasting impact on learning and memory processes and increase the risk to develop stress-related psychopathologies later in life. In this study we investigated (i) how chronic early life stress (ELS) - elicited by limited nesting and bedding material from postnatal day 2 to 9 - affects conditioned fear in adult mice and (ii) whether these effects can be prevented by blocking glucocorticoid receptors (GRs) at adolescent age. In adult male and female mice, ELS did not affect freezing behavior to the first tone 24h after training in an auditory fear-conditioning paradigm. Exposure to repeated tones 24h after training also resulted in comparable freezing behavior in ELS and control mice, both in males and females. However, male (but not female) ELS compared to control mice showed significantly more freezing behavior between the tone-exposures, i.e. during the cue-off periods. Intraperitoneal administration of the GR antagonist RU38486 during adolescence (on postnatal days 28-30) fully prevented enhanced freezing behavior during the cue-off period in adult ELS males. Western blot analysis revealed no effects of ELS on hippocampal expression of glucocorticoid receptors, neither at postnatal day 28 nor at adult age, when mice were behaviorally tested. We conclude that ELS enhances freezing behavior in adult mice in a potentially safe context after cue-exposure, which can be normalized by brief blockade of glucocorticoid receptors during the critical developmental window of adolescence.


Assuntos
Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Antagonistas de Hormônios/farmacologia , Receptores de Glucocorticoides/fisiologia , Estresse Psicológico/fisiopatologia , Fatores Etários , Animais , Sinais (Psicologia) , Feminino , Antagonistas de Hormônios/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mifepristona/administração & dosagem , Mifepristona/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Fatores Sexuais
3.
Front Behav Neurosci ; 9: 374, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26858618

RESUMO

Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice.

4.
Epilepsy Behav ; 41: 127-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25461204

RESUMO

Patients with mesial temporal lobe epilepsy (mTLE) frequently show cognitive deficits. However, the relation between mTLE and cognitive impairment is poorly understood. To gain more insight into epilepsy-associated alterations in cognitive performance, we studied the spatial learning of C57BL/6J mice five weeks after kainate-induced status epilepticus (SE). Typically, structural hippocampal rearrangements take place within five weeks after SE. Mice were monitored by exposing them to four tasks with a focus on spatial memory and anxiety: the circular hole board, modified hole board, novel object-placement task, and elevated plus maze. On the circular hole board, animals showed a higher preference for hippocampus-independent strategies after SE. In contrast, no change in strategy was seen on the modified hole board, but animals with SE were able to finish the task more often. Animals did not have an increased preference for a relocated object in the novel object-placement task but showed an increased locomotion after SE. No indications for altered anxiety were found when tested on the elevated plus maze following SE. These data suggest that the circular hole board is a well-suited paradigm to detect subtle SE-induced hippocampal deficits.


Assuntos
Convulsivantes/toxicidade , Epilepsia/induzido quimicamente , Epilepsia/psicologia , Ácido Caínico/toxicidade , Aprendizagem/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Animais , Ansiedade/psicologia , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Reconhecimento Psicológico/efeitos dos fármacos , Percepção Espacial/efeitos dos fármacos
5.
Front Behav Neurosci ; 8: 26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567706

RESUMO

Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

6.
PLoS One ; 9(1): e86236, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465979

RESUMO

Adrenal corticosteroid hormones act via mineralocorticoid (MR) and glucocorticoid receptors (GR) in the brain, influencing learning and memory. MRs have been implicated in the initial behavioral response in novel situations, which includes behavioral strategies in learning tasks. Different strategies can be used to solve navigational tasks, for example hippocampus-dependent spatial or striatum-dependent stimulus-response strategies. Previous studies suggested that MRs are involved in spatial learning and induce a shift between learning strategies when animals are allowed a choice between both strategies. In the present study, we further explored the role of MRs in spatial and stimulus-response learning in two separate circular holeboard tasks using female mice with forebrain-specific MR deficiency and MR overexpression and their wildtype control littermates. In addition, we studied sex-specific effects using male and female MR-deficient mice. First, we found that MR-deficient compared to control littermates and MR-overexpressing mice display altered exploratory and searching behavior indicative of impaired acquisition of novel information. Second, female (but not male) MR-deficient mice were impaired in the spatial task, while MR-overexpressing female mice showed improved performance in the spatial task. Third, MR-deficient mice were also impaired in the stimulus-response task compared to controls and (in the case of females) MR-overexpressing mice. We conclude that MRs are important for coordinating the processing of information relevant for spatial as well as stimulus-response learning.


Assuntos
Encéfalo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Receptores de Mineralocorticoides/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
PLoS One ; 8(9): e75752, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086625

RESUMO

Doublecortin-like (DCL) is a microtubule-binding protein crucial for neuroblastoma (NB) cell proliferation. We have investigated whether the anti-proliferative effect of DCL knockdown is linked to reduced mitochondrial activity. We found a delay in tumor development after DCL knockdown in vivo in doxycycline-inducible NB tumor xenografts. To understand the mechanisms underlying this tumor growth retardation we performed a series of in vitro experiments in NB cell lines. DCL colocalizes with mitochondria, interacts with the mitochondrial outer membrane protein OMP25/ SYNJ2BP and DCL knockdown results in decreased expression of genes involved in oxidative phosphorylation. Moreover, DCL knockdown decreases cytochrome c oxidase activity and ATP synthesis. We identified the C-terminal Serine/Proline-rich domain and the second microtubule-binding area as crucial DCL domains for the regulation of cytochrome c oxidase activity and ATP synthesis. Furthermore, DCL knockdown causes a significant reduction in the proliferation rate of NB cells under an energetic challenge induced by low glucose availability. Together with our previous studies, our results corroborate DCL as a key player in NB tumor growth in which DCL controls not only mitotic spindle formation and the stabilization of the microtubule cytoskeleton, but also regulates mitochondrial activity and energy availability, which makes DCL a promising molecular target for NB therapy.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neuropeptídeos/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Chlorocebus aethiops , Proteínas do Domínio Duplacortina , Regulação para Baixo/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Neuropeptídeos/metabolismo , Fosforilação/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo
8.
Front Behav Neurosci ; 7: 56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23754993

RESUMO

Corticosterone facilitates behavioral adaptation to a novel experience in a coordinate manner via mineralocorticoid (MR) and glucocorticoid receptors (GR). Initially, MR mediates corticosterone action on appraisal processes, risk assessment and behavioral flexibility and then, GR activation promotes consolidation of the new information into memory. Here, we studied on the circular holeboard (CHB) the spatial performance of female mice with genetic deletion of MR from the forebrain (MR(CaMKCre)) and their wild type littermates (MR(flox/flox) mice) over the estrous cycle and in response to an acute stressor. The estrous cycle had no effect on the spatial performance of MR(flox/flox) mice and neither did the acute stressor. However, the MR(CaMKCre) mutants needed significantly more time to find the exit and made more hole visit errors than the MR(flox/flox) mice, especially when in proestrus and estrus. In addition, stressed MR(CaMKCre) mice in estrus had a shorter exit latency than the control estrus MR(CaMKCre) mice. About 70% of the female MR(CaMKCre) and MR(flox/flox) mice used a hippocampal (spatial, extra maze cues) rather than the caudate nucleus (stimulate-response, S-R, intra-maze cue) strategy and this preference did neither change over the estrous cycle nor after stress. However, stressed MR(CaMKCre) mice using the S-R strategy needed significantly more time to find the exit hole as compared to the spatial strategy using mice suggesting that the MR could be needed for the stress-induced strategy switch toward a spatial strategy. In conclusion, the results suggest that loss of MR interferes with performance of a spatial task especially when estrogen levels are high suggesting a strong interaction between stress and sex hormones.

9.
J Neurochem ; 113(3): 601-14, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20096092

RESUMO

The critical sequence of molecular, neurotransmission and synaptic disruptions that underpin the emergence of psychiatric disorders like schizophrenia remain to be established with progress only likely using animal models that capture key features of such disorders. We have related the emergence of behavioural, neurochemical and synapse ultrastructure deficits to transcriptional dysregulation in the medial prefrontal cortex of Wistar rats reared in isolation. Isolation reared animals developed sensorimotor deficits at postnatal day 60 which persisted into adulthood. Analysis of gene expression prior to the emergence of the sensorimotor deficits revealed a significant disruption in transcriptional control, notably of immediate early and interferon-associated genes. At postnatal day 60 many gene transcripts relating particularly to GABA transmission and synapse structure, for example Gabra4, Nsf, Syn2 and Dlgh1, transiently increased expression. A subsequent decrease in genes such as Gria2 and Dlgh2 at postnatal day 80 suggested deficits in glutamatergic transmission and synapse integrity, respectively. Microdialysis studies revealed decreased extracellular glutamate suggesting a state of hypofrontality while ultrastructural analysis showed total and perforated synapse complement in layer III to be significantly reduced in the prefrontal cortex of postnatal day 80 isolated animals. These studies provide a molecular framework to understand the developmental emergence of the structural and behavioural characteristics that may in part define psychiatric illness.


Assuntos
Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/fisiologia , Isolamento Social/psicologia , Animais , Comportamento Animal/fisiologia , Córtex Cerebral/química , Córtex Cerebral/ultraestrutura , Biologia Computacional , DNA/biossíntese , DNA/genética , Masculino , Microdiálise , Atividade Motora/fisiologia , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA/biossíntese , RNA/genética , RNA Complementar/biossíntese , RNA Complementar/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Sinapses/fisiologia , Fatores de Transcrição
10.
Eur J Neurosci ; 28(3): 419-27, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18702715

RESUMO

The prefrontal cortex (PFC) is an interconnected set of cortical areas that function in the synthesis of a diverse range of information and production of complex behaviour. It is now clear that these frontal structures, through bidirectional excitatory communication with the hippocampal formation, also play a substantial role in long-term memory consolidation. In the hippocampus, morphological synaptic plasticity, supported by regulation of neural cell adhesion molecule (NCAM) polysialylation status, is crucial to information storage. The recent description of polysialylated neurons in the various fields of the medial PFC suggests these structures to possess a similar capacity for synaptic plasticity. Here, using double-labelling immunohistochemistry with glutamic acid decarboxylase 67, we report that the nature of NCAM polysialic acid-positive neurons in the PFC is region-specific, with a high proportion (30-50%) of a gamma-aminobutyric acid (GABA)ergic phenotype in the more ventral infralimbic, orbitofrontal and insular cortices compared with just 10% in the dorsal structures of the cingulate, prelimbic and frontal cortices. Moreover, spatial learning was accompanied by activations in polysialylation expression in ventral PFC structures, while avoidance conditioning involved downregulation of this plasticity marker that was restricted to the dorsomedial PFC--the cingulate and prelimbic cortices. Thus, in contrast to other structures integrated functionally with the hippocampus, memory-associated plasticity mobilized in the PFC is region-, cell type- and task-specific.


Assuntos
Aprendizagem/fisiologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal , Ácidos Siálicos/metabolismo , Animais , Humanos , Masculino , Molécula L1 de Adesão de Célula Nervosa/química , Neurônios/citologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Ácidos Siálicos/química
11.
Chem Res Toxicol ; 19(1): 111-6, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16411663

RESUMO

In vitro studies were performed to elucidate the human cytochrome P450 enzymes involved in the bioactivation of methyleugenol to its proximate carcinogen 1'-hydroxymethyleugenol. Incubations with Supersomes, expressing individual P450 enzymes to a high level, revealed that P450 1A2, 2A6, 2C9, 2C19, and 2D6 are intrinsically able to 1'-hydroxylate methyleugenol. An additional experiment with Gentest microsomes, expressing the same individual enzymes to roughly average liver levels, indicated that P450 1A2, 2C9, 2C19, and 2D6 contribute to methyleugenol 1'-hydroxylation in the human liver. A study, in which correlations between methyleugenol 1'-hydroxylation in human liver microsomes from 15 individuals and the conversion of enzyme specific substrates by the same microsomes were investigated, showed that P450 1A2 and P450 2C9 are important enzymes in the bioactivation of methyleugenol. This was confirmed in an inhibition study in which pooled human liver microsomes were incubated with methyleugenol in the presence and absence of enzyme specific inhibitors. Kinetic studies revealed that at physiologically relevant concentrations of methyleugenol P450 1A2 is the most important enzyme for bioactivation of methyleugenol in the human liver showing an enzyme efficiency (kcat/Km) that is approximately 30, 50, and > 50 times higher than the enzyme efficiencies of, respectively, P450 2C9, 2C19, and 2D6. Only when relatively higher methyleugenol concentrations are present P450 2C9 and P450 2C19 might contribute as well to the bioactivation of methyleugenol in the human liver. A 5-fold difference in activities was found between the 15 human liver microsomes of the correlation study (range, 0.89-4.30 nmol min(-1) nmol P450(-1)). Therefore, interindividual differences might cause variation in sensitivity toward methyleugenol. Especially lifestyle factors such as smoking (induces P450 1A) and the use of barbiturates (induces P450 2C) can increase the susceptibility for adverse effects of methyleugenol.


Assuntos
Carcinógenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Eugenol/análogos & derivados , Aromatizantes/metabolismo , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/metabolismo , Benzoflavonas/farmacologia , Biotransformação , Linhagem Celular , Citocromo P-450 CYP1A2/metabolismo , Inibidores do Citocromo P-450 CYP1A2 , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Inibidores Enzimáticos/farmacologia , Eugenol/metabolismo , Humanos , Técnicas In Vitro , Cinética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Oxigenases de Função Mista , Proteínas Recombinantes/metabolismo , Medição de Risco , Sulfafenazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA