Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
ACS Sens ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822813

RESUMO

The development of new or improved single fluorescent protein (FP)-based biosensors (SFPBs), particularly those with excitation and emission at near-infrared wavelengths, is important for the continued advancement of biological imaging applications. In an effort to accelerate the development of new SFPBs, we report modified transposons for the transposase-based creation of libraries of FPs randomly inserted into analyte binding domains, or vice versa. These modified transposons feature ends that are optimized to minimize the length of the linkers that connect the FP to the analyte binding domain. We rationalized that shorter linkers between the domains should result in more effective allosteric coupling between the analyte binding-dependent conformational change in the binding domain and the fluorescence modulation of the chromophore of the FP domain. As a proof of concept, we employed end-modified Mu transposons for the discovery of SFPB prototypes based on the insertion of two circularly permuted red FPs (mApple and FusionRed) into binding proteins for l-lactate and spermidine. Using an analogous approach, we discovered calcium ion (Ca2+)-specific SFPBs by random insertion of calmodulin (CaM)-RS20 into miRFP680, a particularly bright near-infrared (NIR) FP based on a biliverdin (BV)-binding fluorescent protein. Starting from an miRFP680-based Ca2+ biosensor prototype, we performed extensive directed evolution, including under BV-deficient conditions, to create highly optimized biosensors designated the NIR-GECO3 series. We have extensively characterized the NIR-GECO3 series and explored their utility for biological Ca2+ imaging. The methods described in this work will serve to accelerate SFPB development and open avenues for further exploration and optimization of SFPBs across a spectrum of biological applications.

2.
ACS Cent Sci ; 10(2): 402-416, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38435524

RESUMO

l-Lactate is a monocarboxylate produced during the process of cellular glycolysis and has long generally been considered a waste product. However, studies in recent decades have provided new perspectives on the physiological roles of l-lactate as a major energy substrate and a signaling molecule. To enable further investigations of the physiological roles of l-lactate, we have developed a series of high-performance (ΔF/F = 15 to 30 in vitro), intensiometric, genetically encoded green fluorescent protein (GFP)-based intracellular l-lactate biosensors with a range of affinities. We evaluated these biosensors in cultured cells and demonstrated their application in an ex vivo preparation of Drosophila brain tissue. Using these biosensors, we were able to detect glycolytic oscillations, which we analyzed and mathematically modeled.

3.
Nihon Yakurigaku Zasshi ; 159(1): 25-30, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38171834

RESUMO

Fluorescent imaging sensors based on genetically-encoded and biocompatible proteins have become important tools in medical and biological research due to their high spatiotemporal resolution and ease of use. Protein engineering has led to the development of imaging sensors that visualize changes in the concentration of various target molecules/ions, such as calcium ions. In addition, the development of chemigenetic sensors based on complexes of proteins and synthetic molecules has been gaining momentum in recent years. In this article, the latest research trends in the development of these imaging sensors are introduced, with focus on the sensors developed by our group.


Assuntos
Corantes Fluorescentes , Íons , Proteínas Luminescentes
4.
Nihon Yakurigaku Zasshi ; 159(1): 12, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38171830
5.
Biochem Soc Trans ; 51(4): 1585-1595, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37431791

RESUMO

Fluorescent protein (FP)-based biosensors are genetically encoded tools that enable the imaging of biological processes in the context of cells, tissues, or live animals. Though widely used in biological research, practically all existing biosensors are far from ideal in terms of their performance, properties, and applicability for multiplexed imaging. These limitations have inspired researchers to explore an increasing number of innovative and creative ways to improve and maximize biosensor performance. Such strategies include new molecular biology methods to develop promising biosensor prototypes, high throughput microfluidics-based directed evolution screening strategies, and improved ways to perform multiplexed imaging. Yet another approach is to effectively replace components of biosensors with self-labeling proteins, such as HaloTag, that enable the biocompatible incorporation of synthetic fluorophores or other ligands in cells or tissues. This mini-review will summarize and highlight recent innovations and strategies for enhancing the performance of FP-based biosensors for multiplexed imaging to advance the frontiers of research.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Animais , Proteínas/metabolismo , Corantes Fluorescentes , Técnicas Biossensoriais/métodos
7.
Nat Chem Biol ; 19(1): 38-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36138142

RESUMO

Molecular fluorescent indicators are versatile tools for dynamic imaging of biological systems. We now report a class of indicators that are based on the chemigenetic combination of a synthetic ion-recognition motif and a protein-based fluorophore. Specifically, we have developed a calcium ion (Ca2+) indicator that is based on genetic insertion of circularly permuted green fluorescent protein into HaloTag protein self-labeled with a ligand containing the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. We have demonstrated the versatility of this design by also developing a sodium ion (Na+) indicator using a crown-ether-containing ligand. This approach affords bright and sensitive ion indicators that can be applicable to cell imaging. This design can enable the development of chemigenetic indicators with ion or molecular specificities that have not been realized with fully protein-based indicators.


Assuntos
Cálcio , Quelantes , Proteínas de Fluorescência Verde/genética , Ligantes , Cálcio/metabolismo , Corantes Fluorescentes , Sódio
8.
Mol Cell ; 82(2): 239-240, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063093

RESUMO

Yang et al. (2021) describe a co-culture multiplexed imaging method that can provide an order of magnitude increase in the number of barcoded biosensors that can be imaged in a single experiment.


Assuntos
Técnicas Biossensoriais , Aprendizado Profundo , Técnicas de Cocultura
9.
ACS Med Chem Lett ; 12(9): 1427-1434, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34531951

RESUMO

Peptide-based drugs are an attractive new modality of therapeutics, and in vitro selection from a large-scale library is a powerful way to identify new lead sequences. In conventional screenings, peptide specificity and stability in physiological heterogenous environments are not evaluated, which sometimes makes subsequent optimization difficult. Here we show that selection using a cDNA display system can be performed in a high percentage of serum and that this might be an option to select molecules with high potency and stability in a biological context. Specifically, we chose interleukin-17A as a target protein and performed in vitro selection of cyclic peptide aptamers from a library of approximately 1012 members in the presence of serum. The selected molecules had nanomolar affinity to the target and were stable in serum. Interestingly, we found that a component of the DNA linker that connected the peptide and cDNA may play a pivotal role in target binding.

10.
Molecules ; 25(6)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32214008

RESUMO

Binding peptides for given target molecules are often selected in vitro during drug discovery and chemical biology research. Among several display technologies for this purpose, complementary DNA (cDNA) display (a covalent complex of a peptide and its encoding cDNA linked via a specially designed puromycin-conjugated DNA) is unique in terms of library size, chemical stability, and flexibility of modification. However, selection of cDNA display libraries often suffers from false positives derived from non-specific binding. Although rigorous washing is a straightforward solution, this also leads to the loss of specific binders with moderate affinity because the interaction is non-covalent. To address this issue, herein, we propose a method to covalently link cDNA display molecules with their target proteins using light irradiation. We designed a new puromycin DNA linker that contains a photocrosslinking nucleic acid and prepared cDNA display molecules using the linker. Target proteins were also labeled with a short single-stranded DNA that should transiently hybridize with the linker. Upon ultraviolet (UV) light irradiation, cDNA display molecules encoding correct peptide aptamers made stable crosslinked products with the target proteins in solution, while display molecules encoding control peptides did not. Although further optimization and improvement is necessary, the results pave the way for efficient selection of peptide aptamers in multimolecular crowding biosystems.


Assuntos
Aptâmeros de Peptídeos/química , DNA Complementar/química , Peptídeos/química , Fotoquímica/métodos
11.
ACS Comb Sci ; 22(4): 165-171, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32212679

RESUMO

Efficient and precise construction of DNA libraries is a fundamental starting point for directed evolution of polypeptides. Recently, several in vitro selection methods have been reported that do not rely on cells for protein expression, where peptide libraries in the order of 1013 species are used for in vitro affinity selection. To maximize their potential, simple yet versatile construction of DNA libraries from several fragments containing random regions without bacterial transformation is essential. To address this issue, we herein propose a novel DNA construction methodology based on the use of polymerase chain reaction (PCR) primers containing a single deoxyinosine (I) residue near their 5' end. Treatment of the PCR products with endonuclease V generates 3' overhangs with customized lengths and sequences, which can be ligated accurately and efficiently with other fragments having exactly complementary overhangs. As a proof of concept, we constructed an artificial gene library of single-domain antibodies from four DNA fragments.


Assuntos
DNA/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Biblioteca Gênica , Inosina/análogos & derivados , Oligonucleotídeos/genética , Proteínas Virais/genética , Técnicas de Química Combinatória , DNA/química , Desoxirribonuclease (Dímero de Pirimidina)/química , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Inosina/química , Inosina/genética , Oligonucleotídeos/química , Reação em Cadeia da Polimerase , Proteínas Virais/química , Proteínas Virais/metabolismo
12.
Anal Biochem ; 589: 113490, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678363

RESUMO

Gluten intolerance, or adverse intestinal reactions to gluten, is a fairly common problem among certain groups of people. Celiac disease is the most severe form of gluten intolerance, which can lead to permanent damage in the digestive system. Since lifelong avoidance of gluten is the only available treatment, development of reliable techniques to identify gluten contamination in food is important. Gliadin, a component of gluten, is known to play a major role in gluten toxicity. In this study, cDNA display method was used to select specific single-domain antibodies against toxic gliadin from an alpaca-derived naïve VHH library. The cDNA display method is a promising in vitro display technique, which uniquely converts an unstable mRNA-protein fusion molecule to a stable mRNA/cDNA-protein fusion molecule using a well-designed puromycin linker. Three candidate VHHs were selected and the affinities of the VHHs were observed by pulldown assay and indirect ELISA method. In addition, a novel cDNA display mediated immuno-PCR method (cD-IPCR) was successfully applied to detect gliadin in food. We believe this work demonstrates the potential application of the cDNA display method in selecting binders against toxic and heterogeneous targets such as gliadin with an immunization-free preparation manner.


Assuntos
Camelídeos Americanos/imunologia , Grão Comestível/química , Ensaio de Imunoadsorção Enzimática/métodos , Gliadina/análise , Cadeias Pesadas de Imunoglobulinas/imunologia , Reação em Cadeia da Polimerase/métodos , Anticorpos de Domínio Único/imunologia , Animais , Doença Celíaca/imunologia , Clonagem Molecular , DNA Complementar , Escherichia coli/genética , Biblioteca Gênica , Humanos , Hipersensibilidade a Trigo/imunologia
13.
ACS Omega ; 4(4): 7378-7384, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459836

RESUMO

Peptides that recognize artificial materials including synthetic polymers and small molecules are drawing attention in the fields of biotechnology and chemical biology. In particular, reversible peptide aptamers that associate with the target molecules only under specific conditions are interesting. In this work, peptide aptamers that recognize a phenolphthalein derivative (PhP: a pH-sensitive organic dye) immobilized on a solid surface in a pH-dependent manner were selected using an in vitro display method (cDNA display). Considering the hydrophobic and aromatic nature of PhP, we prepared a biased DNA library (3A library) that encodes more aromatic amino acids than the standard random codon and performed seven rounds of selection from >1010 peptide species. The selected peptides including LVFLIWWM (LV59) associated with PhP-modified solid support (sepharose resin and magnetic beads) in neutral buffer but readily dissociated under basic conditions where PhP undergoes large structural change from lactone to quinoid, which is accompanied by increase of hydrophilicity and anionic charge. Control experiments suggested that LV59 recognized both phenol and lactone moieties, and the association under neutral pH is mainly driven by π-stacking and hydrophobic interaction between the peptide and PhP. Notably, however, total hydrophobicity and number of aromatic rings did not completely explain the affinity, and sequence specificity was observed to some extent. After further optimization, this interaction pair would be practically useful for protein purification.

14.
Anal Biochem ; 578: 1-6, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028717

RESUMO

Immuno-PCR (IPCR) provides sensitive and versatile detection of a variety of antigens by conjugating a PCR-amplifiable DNA reporter to a specific antibody or an aptamer. Several methodologies have been developed to prepare appropriate DNA-antibody conjugates, but in most cases, it remains difficult to label polypeptides with high site-specificity and fixed stoichiometry. To address this issue, we first demonstrated the feasibility of IPCR based on cDNA display, a 1:1 covalent complex of a polypeptide and its encoding cDNA via puromycin at the single molecule level. Several other in vitro display technologies (e.g., ribosome display, mRNA display) have similar simple nucleic acid-peptide linkage. However, they should be unsuitable for diagnostic applications because of their lability against heat and RNase. The newly developed system here, termed cDNA display mediated immuno-PCR (cD-IPCR), proved to work in direct- and sandwich-type detection of target proteins. Detection of a target in serum was also possible, using a VHH (variable domain of the heavy chain of a heavy chain antibody) antibody as a binding molecule. Although further improvement on sensitivity and quantitativity is necessary before the method becomes useful, we believe this work demonstrated a potential of cD-IPCR as an alternative novel format of IPCR.


Assuntos
DNA Complementar/química , Ensaio de Imunoadsorção Enzimática/métodos , Proteína Estafilocócica A/química , Reação em Cadeia da Polimerase/métodos , Domínios e Motivos de Interação entre Proteínas , Anticorpos de Cadeia Única/química
15.
Bio Protoc ; 9(24): e3457, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654952

RESUMO

Immuno-PCR (IPCR) is a powerful method in antigen detection where a PCR-amplifiable DNA reporter is conjugated to a specific antibody or an aptamer for the target molecule. In the development and application of IPCR, successful conjugation of a protein (an antibody) with a reporter DNA becomes challenging. To address this issue, we recently demonstrated the feasibility of IPCR based on cDNA display, a 1:1 covalent complex of a polypeptide and its encoding cDNA at the single molecule level. The cDNA display molecule for IPCR is generated first by transcribing the DNA that encodes the detection antibody into an mRNA by in vitro transcription. A puromycin DNA linker is then ligated to the mRNA and then in vitro translation and reverse-transcription are performed to generate the cDNA display molecule. The molecule is then directly used in antigen detection and subsequent qPCR. This method can be applied to detect various antigens in biological samples, if sequences of their single-domain antibodies (VHHs) or peptide aptamers are known.

16.
Chem Commun (Camb) ; 54(50): 6939-6942, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29862387

RESUMO

Si-Rhodamines are bright fluorophores with red to near-infrared (NIR) emission, and are widely used for fluorescence imaging of biological phenomena. Here, in order to extend the scope of Si-rhodamine fluorophores, we established a versatile synthesis of unsymmetrical Si-rhodamines. To illustrate its value, we used one of these new fluorophores to synthesize a far-red to NIR fluorescence probe for hypoxia, and showed that it can visualize hepatic ischemia in mice in vivo.

17.
J Am Chem Soc ; 140(18): 5925-5933, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29688713

RESUMO

In biological systems, the pH in intracellular organelles or tissues is strictly regulated, and differences of pH are deeply related to key biological events such as protein degradation, intracellular trafficking, renal failure, and cancer. Ratiometric fluorescence imaging is useful for determination of precise pH values, but existing fluorescence probes have substantial limitations, such as inappropriate p Ka for imaging in the physiological pH range, inadequate photobleaching resistance, and insufficiently long excitation and emission wavelengths. Here we report a versatile scaffold for ratiometric fluorescence pH probes, based on asymmetric rhodamine. To demonstrate its usefulness for biological applications, we employed it to develop two probes. (1) SiRpH5 has suitable p Ka and water solubility for imaging in acidic intracellular compartments; by using transferrin tagged with SiRpH5, we achieved time-lapse imaging of pH in endocytic compartments during protein trafficking for the first time. (2) Me-pEPPR is a near-infrared (NIR) probe; by using dextrin tagged with Me-pEPPR, we were able to image extracellular pH of renal tubules and tumors in situ. These chemical tools should be useful for studying the influence of intra- and extracellular pH on biological processes, as well as for in vivo imaging.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Imagem Óptica , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Corantes Fluorescentes/farmacocinética , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Estrutura Molecular , Neoplasias/patologia , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/patologia , Solubilidade , Água/química
18.
J Am Chem Soc ; 139(39): 13713-13719, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28872304

RESUMO

Photodynamic therapy (PDT) utilizes photoirradiation in the presence of photosensitizers to ablate cancer cells via generation of singlet oxygen (1O2), but it is important to minimize concomitant injury to normal tissues. One approach for achieving this is to use activatable photosensitizers that can generate 1O2 only under specific conditions. Here, we report a novel photosensitizer that is selectively activated under hypoxia, a common condition in solid tumors. We found that introducing an azo moiety into the conjugated system of a seleno-rosamine dye effectively hinders the intersystem crossing process that leads to 1O2 generation. We show that the azo group is reductively cleaved in cells under hypoxia, enabling production of 1O2 to occur. In PDT in vitro, cells under mild hypoxia, within the range typically found in solid tumors (up to about 5% O2), were selectively ablated, leaving adjacent normoxic cells intact. This simple and practical azo-based strategy should be widely applicable to design a range of activatable photosensitizers.


Assuntos
Compostos Azo/farmacologia , Hipóxia Celular/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Compostos Azo/síntese química , Compostos Azo/química , Linhagem Celular Tumoral , Humanos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
19.
Data Brief ; 12: 351-357, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28491938

RESUMO

In this data article, we described the detailed synthetic procedure and the experimental data for the synthesis of a red-fluorescent probe for calcium ions (Ca2+) with improved water solubility. This Ca2+ red-fluorescent probe CaTM-3 AM could be applied to fluorescence imaging of physiological Ca2+ concentration changes in not only live cells, but also brain slices, with high cell-membrane permeability leading to bright fluorescence in biosamples. The data provided herein are in association with the research article "The Development of Practical Red Fluorescent Probe for Cytoplasmic Calcium Ions with Greatly Improved Cell-membrane Permeability" in Cell Calcium (Hirabayashi et al., 2016) [1].

20.
Chem Commun (Camb) ; 53(24): 3458-3461, 2017 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-28271115

RESUMO

The first in vitro selection of binding peptides against artificial lipid membranes from a random peptide library using an in vitro display method (cDNA display) is reported. The selected peptide, LB-1, has both amphiphilic and cationic regions, and proteins fused to LB-1 can be immobilized on the liposome surface.


Assuntos
Bicamadas Lipídicas/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , DNA Complementar/química , DNA Complementar/metabolismo , Bicamadas Lipídicas/química , Lipossomos/química , Lipossomos/metabolismo , Microscopia Confocal , Peptídeos/química , Reação em Cadeia da Polimerase , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA