Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Colloid Interface Sci ; 678(Pt C): 334-345, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39298986

RESUMO

Skeletal muscle integrity and its intrinsic aligned architecture are crucial for locomotion, postural support, and respiration functions, impacting overall quality of life. However, volumetric muscle loss (VML) can exceed intrinsic regenerative potential, leading to fibrosis and impairments. Autologous muscle grafting, the current gold standard, is constrained by tissue availability and success rates. Therefore, innovative strategies like cell-based therapies and scaffold-based approaches are needed. Our minimally invasive approach involves a tunable injectable hydrogel capable of achieving an aligned architecture post-injection via a low-intensity static magnetic field (SMF). Our hydrogel formulation uses gellan gum as the backbone polymer, enriched with essential extracellular matrix components such as hyaluronic acid and collagen type I, enhancing bio-functionality. To achieve an aligned architectural biomimicry, collagen type I is coupled with iron oxide magnetic nanoparticles, creating magnetic collagen bundles (MagC) that align within the hydrogel when exposed to a SMF. An extensive study was performed to characterize MagC and assess the hydrogel's stability, mechanical properties, and biological response in vitro and in vivo. The proposed system, fully composed of natural polymers, exhibited mechanical properties similar to human skeletal muscle and demonstrated effective biological performances, supporting its potential as a safe and patient-friendly treatment for VML.

2.
Mater Today Bio ; 27: 101110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39211510

RESUMO

Cellular alignment plays a pivotal role in several human tissues, including skeletal muscle, spinal cord and tendon. Various techniques have been developed to control cellular alignment using 3D biomaterials. However, the majority of 3D-aligned scaffolds require invasive surgery for implantation. In contrast, injectable hydrogels provide a non-invasive delivery method, gaining considerable attention for the treatment of diverse conditions, including osteochondral lesions, volumetric muscle loss, and traumatic brain injury. We engineered a biomimetic hydrogel with magnetic responsiveness by combining gellan gum, hyaluronic acid, collagen, and magnetic nanoparticles (MNPs). Collagen type I was paired with MNPs to form magnetic collagen bundles (MCollB), allowing the orientation control of these bundles within the hydrogel matrix through the application of a remote low-intensity magnetic field. This resulted in the creation of an anisotropic architecture. The hydrogel mechanical properties were comparable to those of human soft tissues, such as skeletal muscle, and proof of the aligned hydrogel concept was demonstrated. In vitro findings confirmed the absence of toxicity and pro-inflammatory effects. Notably, an increased fibroblast cell proliferation and pro-regenerative activation of macrophages were observed. The in-vivo study further validated the hydrogel biocompatibility and demonstrated the feasibility of injection with rapid in situ gelation. Consequently, this magnetically controlled injectable hydrogel exhibits significant promise as a minimally invasive, rapid gelling and effective treatment for regenerating various aligned human tissues.

3.
Nanoscale ; 16(8): 4082-4094, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348700

RESUMO

The recent COVID19 pandemic has remarkably boosted the research on in vitro diagnosis assays to detect biomarkers in biological fluids. Specificity and sensitivity are mandatory for diagnostic kits aiming to reach clinical stages. Whilst the modulation of sensitivity can significantly improve the detection of biomarkers in liquids, this has been scarcely explored. Here, we report on the proof of concept and parametrization of a novel biosensing methodology based on the changes of AC magnetic hysteresis areas observed for magnetic nanoparticles following biomolecular recognition in liquids. Several parameters are shown to significantly modulate the transducing capacity of magnetic nanoparticles to detect analytes dispersed in saline buffer at concentrations of clinical relevance. Magnetic nanoparticles were bio-conjugated with an engineered recognition peptide as a receptor. Analytes are engineered tetratricopeptide binding domains fused to the fluorescent protein whose dimerization state allows mono- or divalent variants. Our results unveil that the number of receptors per particle, analyte valency and concentration, nanoparticle composition and concentration, and field conditions play a key role in the formation of assemblies driven by biomolecular recognition. Consequently, all these parameters modulate the nanoparticle transduction capacity. Our study provides essential insights into the potential of AC magnetometry for customizing biomarker detection in liquids.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Magnetismo , Nanopartículas/química , Biomarcadores , Fenômenos Magnéticos , Técnicas Biossensoriais/métodos
4.
Nanoscale ; 14(43): 16208-16219, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36281691

RESUMO

Optomagnetic nanofluids (OMNFs) are colloidal dispersions of nanoparticles (NPs) with combined magnetic and optical properties. They are especially appealing in biomedicine since they can be used as minimally invasive platforms for controlled hyperthermia treatment of otherwise difficultly accessible tumors such as intracranial ones. On the one hand, magnetic NPs act as heating mediators when subjected to alternating magnetic fields or light irradiation. On the other hand, suitably tailored luminescent NPs can provide a precise and remote thermal readout in real time. The combination of heating and thermometric properties allows, in principle, to precisely monitor the increase in the temperature of brain tumors up to the therapeutic level, without causing undesired collateral damage. In this work we demonstrate that this view is an oversimplification since it ignores the presence of relevant interactions between magnetic (γ-Fe2O3 nanoflowers) and luminescent nanoparticles (Ag2S NPs) that result in a detrimental alteration of their physicochemical properties. The magnitude of such interactions depends on the interparticle distance and on the surface properties of nanoparticles. Experiments performed in mouse brains (phantoms and ex vivo) revealed that OMNFs cannot induce relevant heating under alternating magnetic fields and fail to provide reliable temperature reading. In contrast, we demonstrate that the use of luminescent nanofluids (containing only Ag2S NPs acting as both photothermal agents and nanothermometers) stands out as a better alternative for thermally monitored hyperthermia treatment of brain tumors in small animal models.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Animais , Camundongos , Linhagem Celular Tumoral , Campos Magnéticos , Encéfalo , Neoplasias Encefálicas/terapia
5.
Pharmaceutics ; 14(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893782

RESUMO

The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.

6.
Nanoscale ; 14(24): 8789-8796, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35678469

RESUMO

The potential of magnetic nanoparticles for acting as efficient catalysts, imaging tracers or heating mediators relays on their superparamagnetic behaviour under alternating magnetic fields. In spite of the relevance of this magnetic phenomenon, the identification of specific fingerprints to unequivocally assign superparamagnetic behaviour to nanomaterials is still lacking. Herein, we report on novel experimental and theoretical evidences related to the superparamagnetism observed in magnetic iron oxide nanoparticle suspensions at room temperature. AC magnetization measurements in a broad field frequency range from mHz to kHz and field intensities up to 40 kA m-1 unambiguously demonstrate the transition from superparamagnetic to blocked states at room temperature. Our experimental observations are supported by a theoretical model based on the stochastic Landau-Liftshitz-Gilbert equation. An empirical expression is proposed to determine the effective magnetic anisotropy from the field frequency value beyond which AC magnetization shows hysteretic behaviour. Our results significantly improve the understanding and description of the superparamagnetism of iron oxide nanoparticles, paving the way towards a more efficient exploitation of their unique magnetic properties.

7.
Nanoscale ; 13(32): 13665-13680, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477642

RESUMO

Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc-cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs.

8.
Nanoscale ; 13(34): 14552-14571, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473175

RESUMO

Iron oxide nanoparticles (IONPs) are well-known contrast agents for MRI for a wide range of sizes and shapes. Their use as theranostic agents requires a better understanding of their magnetic hyperthermia properties and also the design of a biocompatible coating ensuring their stealth and a good biodistribution to allow targeting of specific diseases. Here, biocompatible IONPs of two different shapes (spherical and octopod) were designed and tested in vitro and in vivo to evaluate their abilities as high-end theranostic agents. IONPs featured a dendron coating that was shown to provide anti-fouling properties and a small hydrodynamic size favoring an in vivo circulation of the dendronized IONPs. While dendronized nanospheres of about 22 nm size revealed good combined theranostic properties (r2 = 303 mM s-1, SAR = 395 W gFe-1), octopods with a mean size of 18 nm displayed unprecedented characteristics to simultaneously act as MRI contrast agents and magnetic hyperthermia agents (r2 = 405 mM s-1, SAR = 950 W gFe-1). The extensive structural and magnetic characterization of the two dendronized IONPs reveals clear shape, surface and defect effects explaining their high performance. The octopods seem to induce unusual surface effects evidenced by different characterization techniques while the nanospheres show high internal defects favoring Néel relaxation for magnetic hyperthermia. The study of octopods with different sizes showed that Néel relaxation dominates at sizes below 20 nm while the Brownian one occurs at higher sizes. In vitro experiments demonstrated that the magnetic heating capability of octopods occurs especially at low frequencies. The coupling of a small amount of glucose on dendronized octopods succeeded in internalizing them and showing an effect of MH on tumor growth. All measurements evidenced a particular signature of octopods, which is attributed to higher anisotropy, surface effects and/or magnetic field inhomogeneity induced by tips. This approach aiming at an analysis of the structure-property relationships is important to design efficient theranostic nanoparticles.


Assuntos
Nanopartículas de Magnetita , Medicina de Precisão , Meios de Contraste , Compostos Férricos , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Magnetismo , Nanomedicina Teranóstica , Distribuição Tecidual
9.
Nanomaterials (Basel) ; 11(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34361181

RESUMO

A magnetic nanocomposite, consisting of Fe3O4 nanoparticles embedded into a Mg/Al layered double hydroxide (LDH) matrix, was developed for cancer multimodal therapy, based on the combination of local magnetic hyperthermia and thermally induced drug delivery. The synthesis procedure involves the sequential hydrolysis of iron salts (Fe2+, Fe3+) and Mg2+/Al3+ nitrates in a carbonate-rich mild alkaline environment followed by the loading of 5-fluorouracil, an anionic anticancer drug, in the interlayer LDH space. Magnetite nanoparticles with a diameter around 30 nm, dispersed in water, constitute the hyperthermia-active phase able to generate a specific loss of power of around 500 W/g-Fe in an alternating current (AC) magnetic field of 24 kA/m and 300 kHz as determined by AC magnetometry and calorimetric measurements. Heat transfer was found to trigger a very rapid release of drug which reached 80% of the loaded mass within 10 min exposure to the applied field. The potential of the Fe3O4/LDH nanocomposites as cancer treatment agents with minimum side-effects, owing to the exclusive presence of inorganic phases, was validated by cell internalization and toxicity assays.

10.
Adv Mater ; 33(30): e2100077, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117667

RESUMO

Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.


Assuntos
Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocápsulas/química , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Temperatura Alta , Humanos , Hipertermia Induzida , Raios Infravermelhos , Campos Magnéticos , Magnetismo , Camundongos , Imagem Óptica , Terapia Fototérmica , Compostos de Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA