Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Circ Cardiovasc Interv ; 17(4): e013702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525609

RESUMO

BACKGROUND: Intravascular imaging and intracoronary physiology may both be used to guide and optimize percutaneous coronary intervention; however, they are rarely used together. The virtual flow reserve (VFR) is an optical coherence tomography (OCT)-based model of fractional flow reserve (FFR) facilitating the assessment of the physiological significance of coronary lesions. We aimed to validate the VFR assessment of intermediate coronary artery stenoses. METHODS: FUSION (Validation of OCT-Based Functional Diagnosis of Coronary Stenosis) was a multicenter, prospective, observational study comparing OCT-derived VFR to invasive FFR. VFR was mathematically derived from a lumped parameter flow model based on 3-dimensional lumen morphology. Patients undergoing coronary angiography with intermediate angiographic stenosis (40%-90%) requiring physiological assessment were enrolled. Investigational sites were blinded to the VFR analysis, and all OCT and FFR data were reviewed by an independent core laboratory. The coprimary end points were the sensitivity and specificity of VFR against FFR as the reference standard, each of which was tested against prespecified performance goals. RESULTS: After core laboratory review, 266 vessels in 224 patients from 25 US centers were included in the analysis. The mean angiographic diameter stenosis was 65.5%±14.9%, and the mean FFR was 0.83±0.11. Overall accuracy, sensitivity, and specificity of VFR versus FFR using a binary cutoff point of 0.80 were 82.0%, 80.4%, and 82.9%, respectively. The 97.5% lower confidence bound met the prespecified performance goal for sensitivity (71.6% versus 70%; P=0.01) and specificity (76.6% versus 75%; P=0.01). The area under the curve was 0.88 (95% CI, 0.84-0.92; P<0.0001). CONCLUSIONS: OCT-derived VFR demonstrates high sensitivity and specificity for predicting invasive FFR. Integrating high-resolution intravascular imaging with imaging-derived physiology may provide synergistic benefits as an adjunct to percutaneous coronary intervention. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT04356027.


Assuntos
Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Humanos , Constrição Patológica , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Tomografia de Coerência Óptica/métodos , Estudos Prospectivos , Resultado do Tratamento , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/terapia , Angiografia Coronária/métodos , Vasos Coronários , Valor Preditivo dos Testes , Índice de Gravidade de Doença
2.
N Engl J Med ; 390(1): 9-19, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37888915

RESUMO

BACKGROUND: Among patients with chronic limb-threatening ischemia (CLTI) and infrapopliteal artery disease, angioplasty has been associated with frequent reintervention and adverse limb outcomes from restenosis. The effect of the use of drug-eluting resorbable scaffolds on these outcomes remains unknown. METHODS: In this multicenter, randomized, controlled trial, 261 patients with CLTI and infrapopliteal artery disease were randomly assigned in a 2:1 ratio to receive treatment with an everolimus-eluting resorbable scaffold or angioplasty. The primary efficacy end point was freedom from the following events at 1 year: amputation above the ankle of the target limb, occlusion of the target vessel, clinically driven revascularization of the target lesion, and binary restenosis of the target lesion. The primary safety end point was freedom from major adverse limb events at 6 months and from perioperative death. RESULTS: The primary efficacy end point was observed (i.e., no events occurred) in 135 of 173 patients in the scaffold group and 48 of 88 patients in the angioplasty group (Kaplan-Meier estimate, 74% vs. 44%; absolute difference, 30 percentage points; 95% confidence interval [CI], 15 to 46; one-sided P<0.001 for superiority). The primary safety end point was observed in 165 of 170 patients in the scaffold group and 90 of 90 patients in the angioplasty group (absolute difference, -3 percentage points; 95% CI, -6 to 0; one-sided P<0.001 for noninferiority). Serious adverse events related to the index procedure occurred in 2% of the patients in the scaffold group and 3% of those in the angioplasty group. CONCLUSIONS: Among patients with CLTI due to infrapopliteal artery disease, the use of an everolimus-eluting resorbable scaffold was superior to angioplasty with respect to the primary efficacy end point. (Funded by Abbott; LIFE-BTK ClinicalTrials.gov number, NCT04227899.).


Assuntos
Angioplastia , Implante de Prótese Vascular , Isquemia Crônica Crítica de Membro , Stents Farmacológicos , Doença Arterial Periférica , Artéria Poplítea , Humanos , Implantes Absorvíveis , Angioplastia/efeitos adversos , Angioplastia/métodos , Angioplastia com Balão/efeitos adversos , Angioplastia com Balão/métodos , Implante de Prótese Vascular/métodos , Doença Crônica , Isquemia Crônica Crítica de Membro/etiologia , Isquemia Crônica Crítica de Membro/cirurgia , Everolimo/administração & dosagem , Everolimo/efeitos adversos , Everolimo/uso terapêutico , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Isquemia/tratamento farmacológico , Isquemia/etiologia , Isquemia/cirurgia , Doença Arterial Periférica/complicações , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/cirurgia , Artéria Poplítea/cirurgia , Alicerces Teciduais , Resultado do Tratamento
3.
ACS Appl Bio Mater ; 3(12): 8658-8666, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019636

RESUMO

The primary treatment for malignant tumors remains to be resection. The strongest predictor of recurrence and postoperative prognosis is whether diseased tissue/cells remain(s) at the surgical margin. Cancer surgery entails surgeons having the capability to visually distinguish between subtle shades of color in attempts of differentiating between diseased tissue and healthy tissue under standard white-light illumination, as such tissue states appear identical at the meso-/macroscopic level. Accordingly, enhancing the capability of surgeons to do so such that they can accurately delineate the tumor margin is of paramount importance. Fluorescence-guided surgery facilitates in enhancing such capability by color-coding the surgical field with overlaid contrasting pseudo-colors from real-time intraoperative fluorescence emission via utilizing fluorescent constructs in tandem. Constructs undergoing clinical trials or that are FDA-approved provide peak fluorescence emission in the visible (405 - 700 nm) or near-infrared-I (NIR-I) spectral region (700-900 nm), whereby differentiation between tissue states progressively improves in sync with using constructs that emit longer wavelengths of light. Here, we repurpose the usage of such fluorescent constructs by establishing feasibility of a tumor-targeting immunoconjugate (cetuximab-IRDye800) having peak fluorescence emission at the NIR-I spectral region to provide improved tumor margin delineation by affording higher tumor-to-background ratios (TBRs) when measuring its off-peak fluorescence emission at the near-infrared-II (NIR-II) spectral region (1000-1700 nm) in in vivo applications. We prepared murine tumor models, administered such immunoconjugate, and imaged such models pre-/post-administration via utilizing imaging systems that separately afforded acquisition of fluorescence emission in the NIR-I or NIR-II spectral region. On doing so, we determined in vivo TBRs, ex vivo TBRs with/-out skin, and ex vivo biodistribution, all via measuring the fluorescence emission of the immunoconjugate at tumor site(s) at both spectral regions. Collectively, we established feasibility of using the immunoconjugate to afford improved tumor margin delineation by providing 2-fold higher TBRs via utilizing the NIR-II spectral region to capture off-peak fluorescence emission from a fluorescent construct having NIR-I peak fluorescence emission.

4.
RSC Adv ; 10(69): 42413-42422, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33391732

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumor type and is associated with a high mortality rate borne out of such affording a survival rate of only 15 months. GBM aggressiveness is associated with the overexpression of epidermal growth factor receptor (EGFR) and its mutants. Targeting GBM with therapeutics is challenging because the blood-brain barrier (BBB) permits primarily select small-molecule entities across its semipermeable blockade. However, recent preclinical data suggest that large biomolecules, such as the anti-EGFR antibody therapeutic, cetuximab, could be capable of bypassing the BBB despite the relative enormity of its size. As such, we set forth to establish the feasibility of utilizing an EGFR-targeting near-infrared-I (NIR-I) fluorescent construct in the form of an immunoconjugate (cetuxmimab-IRDye800) to achieve visual differentiation between diseased brain tissue arising from a low-passage patient-derived GBM cell line (GBM39) and healthy brain tissue via utilizing orthotopic intracranial murine GBM39 tumor models for in vivo and ex vivo evaluation such that by doing so would establish proof of concept for ultimately facilitating its in vivo fluorescence-guided resection and ex vivo surgical back-table pathological confirmation in the clinic. As anticipated, we were not capable of distinguishing between malignant tumor tissue and healthy tissue in resected intact and slices of whole brain ex vivo under white-light illumination (WLI) due to both the diseased tissue and healthy tissue appearing virtually identical to the unaided eye. However, we readily observed over an average 6-fold enhancement in the fluorescence emission in the resected intact whole brain ex vivo when performing NIR-I fluorescence imaging (FLI) on the cohort of GBM39 tumor models that were administered the immunoconjugate compared to controls. In all, we laid the initial groundwork for establishing that NIR-I fluorescent immunoconjugates (theranostics) such as cetuximab-IRDye800 can bypass the BBB to visually afford GBM39 tumor tissue differentiation for its image-guided surgical removal.

5.
Nat Commun ; 10(1): 5044, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695030

RESUMO

Identification of lymph node (LN) metastasis is essential for staging of solid tumors, and as a result, surgeons focus on harvesting significant numbers of LNs during ablative procedures for pathological evaluation. Isolating those LNs most likely to harbor metastatic disease can allow for a more rigorous evaluation of fewer LNs. Here we evaluate the impact of a systemically injected, near-infrared fluorescently-labeled, tumor-targeting contrast agent, panitumumab-IRDye800CW, to facilitate the identification of metastatic LNs in the ex vivo setting for head and neck cancer patients. Molecular imaging demonstrates a significantly higher mean fluorescence signal in metastatic LNs compared to benign LNs in head and neck cancer patients undergoing an elective neck dissection. Molecular imaging to preselect at-risk LNs may thus allow a more rigorous examination of LNs and subsequently lead to improved prognostication than regular neck dissection.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Metástase Linfática/diagnóstico por imagem , Imagem Molecular/métodos , Imagem Óptica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Corantes Fluorescentes , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Linfonodos/cirurgia , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Coloração e Rotulagem
6.
HPB (Oxford) ; 21(7): 883-890, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30723062

RESUMO

BACKGROUND: Although most patients with PDAC experience distant failure after resection, a significant portion still present with local recurrence. Intraoperative fluorescent imaging can potentially facilitate the visualization of involved peritumoral LNs and guide the locoregional extent of nodal dissection. Here, the efficacy of targeted intraoperative fluorescent imaging was examined in the detection of metastatic lymph nodes (LNs) during resection of pancreatic ductal adenocarcinoma (PDAC). METHODS: A dose-escalation prospective study was performed to assess feasibility of tumor detection within peripancreatic LNs using cetuximab-IRDye800 in PDAC patients. Fluorescent imaging of dissected LNs was analyzed ex vivo macroscopically and microscopically and fluorescence was correlated with histopathology. RESULTS: A total of 144 LNs (72 in the low-dose and 72 in the high-dose cohort) were evaluated. Detection of metastatic LNs by fluorescence was better in the low-dose (50 mg) cohort, where sensitivity and specificity was 100% and 78% macroscopically, and 91% and 66% microscopically. More importantly, this method was able to detect occult foci of tumor (measuring < 5 mm) with a sensitivity of 88% (15/17 LNs). CONCLUSION: This study provides proof of concept that intraoperative fluorescent imaging with cetuximab-IRDye800 can facilitate the detection of peripancreatic lymph nodes often containing subclinical foci of disease.


Assuntos
Carcinoma Ductal Pancreático/cirurgia , Cuidados Intraoperatórios/métodos , Linfonodos/patologia , Imagem Molecular , Imagem Óptica , Pancreatectomia , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/secundário , Cetuximab/administração & dosagem , Receptores ErbB/metabolismo , Estudos de Viabilidade , Corantes Fluorescentes/administração & dosagem , Humanos , Indóis/administração & dosagem , Excisão de Linfonodo , Linfonodos/metabolismo , Linfonodos/cirurgia , Metástase Linfática , Microscopia de Fluorescência , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Valor Preditivo dos Testes , Estudos Prospectivos , Espectroscopia de Luz Próxima ao Infravermelho , Resultado do Tratamento
7.
Cancer Res ; 78(17): 5144-5154, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29967260

RESUMO

For many solid tumors, surgical resection remains the gold standard and tumor-involved margins are associated with poor clinical outcomes. Near-infrared (NIR) fluorescence imaging using molecular agents has shown promise for in situ imaging during resection. However, for cancers with difficult imaging conditions, surgical value may lie in tumor mapping of surgical specimens. We thus evaluated a novel approach for real-time, intraoperative tumor margin assessment. Twenty-one adult patients with biopsy-confirmed squamous cell carcinoma arising from the head and neck (HNSCC) scheduled for standard-of-care surgery were enrolled. Cohort 1 (n = 3) received panitumumab-IRDye800CW at an intravenous microdose of 0.06 mg/kg, cohort 2A (n = 5) received 0.5 mg/kg, cohort 2B (n = 7) received 1 mg/kg, and cohort 3 (n = 6) received 50 mg. Patients were followed 30 days postinfusion and adverse events were recorded. Imaging was performed using several closed- and wide-field devices. Fluorescence was histologically correlated to determine sensitivity and specificity. In situ imaging demonstrated tumor-to-background ratio (TBR) of 2 to 3, compared with ex vivo specimen imaging TBR of 5 to 6. We obtained clear differentiation between tumor and normal tissue, with a 3-fold signal difference between positive and negative specimens (P < 0.05). We achieved high correlation of fluorescence intensity with tumor location with sensitivities and specificities >89%; fluorescence predicted distance of tumor tissue to the cut surface of the specimen. This novel method of detecting tumor-involved margins in surgical specimens using a cancer-specific agent provides highly sensitive and specific, real-time, intraoperative surgical navigation in resections with complex anatomy, which are otherwise less amenable to image guidance.Significance: This study demonstrates that fluorescence can be used as a sensitive and specific method of guiding surgeries for head and neck cancers and potentially other cancers with challenging imaging conditions, increasing the probability of complete resections and improving oncologic outcomes. Cancer Res; 78(17); 5144-54. ©2018 AACR.


Assuntos
Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Cirurgia Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos de Coortes , Receptores ErbB , Feminino , Fluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Margens de Excisão , Pessoa de Meia-Idade , Imagem Óptica/métodos , Panitumumabe/administração & dosagem , Manejo de Espécimes , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
8.
Theranostics ; 8(9): 2488-2495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721094

RESUMO

Purpose: To demonstrate the safety and feasibility of leveraging therapeutic antibodies for surgical imaging. Procedures: We conducted two phase I trials for anti-epidermal growth factor receptor antibodies cetuximab-IRDye800CW (n=12) and panitumumab-IRDye800CW (n=15). Adults with biopsy-confirmed head and neck squamous cell carcinoma scheduled for standard-of-care surgery were eligible. For cetuximab-IRDye800CW, cohort 1 was intravenously infused with 2.5 mg/m2, cohort 2 received 25 mg/m2, and cohort 3 received 62.5 mg/m2. For panitumumab-IRDye800CW, cohorts received 0.06 mg/kg, 0.5 mg/kg, and 1 mg/kg, respectively. Electrocardiograms and blood samples were obtained, and patients were followed for 30 days post-study drug infusion. Results: Both fluorescently labeled antibodies had similar pharmacodynamic properties and minimal toxicities. Two infusion reactions occurred with cetuximab and none with panitumumab. There were no grade 2 or higher toxicities attributable to cetuximab-IRDye800CW or panitumumab-IRDye800CW; fifteen grade 1 adverse events occurred with cetuximab-IRDye800CW, and one grade 1 occurred with panitumumab-IRDye800CW. There were no significant differences in QTc prolongation between the two trials (p=0.8). Conclusions: Panitumumab-IRDye800CW and cetuximab-IRDye800CW have toxicity and pharmacodynamic profiles that match the parent compound, suggesting that other therapeutic antibodies may be repurposed as imaging agents with limited preclinical toxicology data.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Benzenossulfonatos/efeitos adversos , Cetuximab/efeitos adversos , Neoplasias de Cabeça e Pescoço/cirurgia , Indóis/efeitos adversos , Panitumumabe/efeitos adversos , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos Imunológicos/administração & dosagem , Benzenossulfonatos/administração & dosagem , Cetuximab/administração & dosagem , Receptores ErbB/metabolismo , Feminino , Fluorescência , Imunofluorescência/métodos , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Indóis/administração & dosagem , Masculino , Pessoa de Meia-Idade , Panitumumabe/administração & dosagem
9.
J Neurooncol ; 139(1): 135-143, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29623552

RESUMO

INTRODUCTION: Maximizing extent of surgical resection with the least morbidity remains critical for survival in glioblastoma patients, and we hypothesize that it can be improved by enhancements in intraoperative tumor detection. In a clinical study, we determined if therapeutic antibodies could be repurposed for intraoperative imaging during resection. METHODS: Fluorescently labeled cetuximab-IRDye800 was systemically administered to three patients 2 days prior to surgery. Near-infrared fluorescence imaging of tumor and histologically negative peri-tumoral tissue was performed intraoperatively and ex vivo. Fluorescence was measured as mean fluorescence intensity (MFI), and tumor-to-background ratios (TBRs) were calculated by comparing MFIs of tumor and histologically uninvolved tissue. RESULTS: The mean TBR was significantly higher in tumor tissue of contrast-enhancing (CE) tumors on preoperative imaging (4.0 ± 0.5) compared to non-CE tumors (1.2 ± 0.3; p = 0.02). The TBR was higher at a 100 mg dose than at 50 mg (4.3 vs. 3.6). The smallest detectable tumor volume in a closed-field setting was 70 mg with 50 mg of dye and 10 mg with 100 mg. On sections of paraffin embedded tissues, fluorescence positively correlated with histological evidence of tumor. Sensitivity and specificity of tumor fluorescence for viable tumor detection was calculated and fluorescence was found to be highly sensitive (73.0% for 50 mg dose, 98.2% for 100 mg dose) and specific (66.3% for 50 mg dose, 69.8% for 100 mg dose) for viable tumor tissue in CE tumors while normal peri-tumoral tissue showed minimal fluorescence. CONCLUSION: This first-in-human study demonstrates the feasibility and safety of antibody based imaging for CE glioblastomas.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Imagem Óptica , Cirurgia Assistida por Computador , Antineoplásicos Imunológicos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/patologia , Cetuximab , Relação Dose-Resposta a Droga , Corantes Fluorescentes , Glioblastoma/patologia , Humanos , Indóis , Imagem Óptica/métodos , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho , Cirurgia Assistida por Computador/métodos
10.
Ann Surg Oncol ; 25(7): 1880-1888, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29667116

RESUMO

BACKGROUND: Operative management of pancreatic ductal adenocarcinoma (PDAC) is complicated by several key decisions during the procedure. Identification of metastatic disease at the outset and, when none is found, complete (R0) resection of primary tumor are key to optimizing clinical outcomes. The use of tumor-targeted molecular imaging, based on photoacoustic and fluorescence optical imaging, can provide crucial information to the surgeon. The first-in-human use of multimodality molecular imaging for intraoperative detection of pancreatic cancer is reported using cetuximab-IRDye800, a near-infrared fluorescent agent that binds to epidermal growth factor receptor. METHODS: A dose-escalation study was performed to assess safety and feasibility of targeting and identifying PDAC in a tumor-specific manner using cetuximab-IRDye800 in patients undergoing surgical resection for pancreatic cancer. Patients received a loading dose of 100 mg of unlabeled cetuximab before infusion of cetuximab-IRDye800 (50 mg or 100 mg). Multi-instrument fluorescence imaging was performed throughout the surgery in addition to fluorescence and photoacoustic imaging ex vivo. RESULTS: Seven patients with resectable pancreatic masses suspected to be PDAC were enrolled in this study. Fluorescence imaging successfully identified tumor with a significantly higher mean fluorescence intensity in the tumor (0.09 ± 0.06) versus surrounding normal pancreatic tissue (0.02 ± 0.01), and pancreatitis (0.04 ± 0.01; p < 0.001), with a sensitivity of 96.1% and specificity of 67.0%. The mean photoacoustic signal in the tumor site was 3.7-fold higher than surrounding tissue. CONCLUSIONS: The safety and feasibilty of intraoperative, tumor-specific detection of PDAC using cetuximab-IRDye800 with multimodal molecular imaging of the primary tumor and metastases was demonstrated.


Assuntos
Carcinoma Ductal Pancreático/patologia , Corantes Fluorescentes/química , Cuidados Intraoperatórios , Imagem Molecular/métodos , Imagem Multimodal/métodos , Neoplasias Pancreáticas/patologia , Antineoplásicos Imunológicos/química , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/cirurgia , Cetuximab/química , Estudos de Coortes , Seguimentos , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Prognóstico , Espectroscopia de Luz Próxima ao Infravermelho/métodos
11.
J Biomed Mater Res A ; 106(7): 1903-1915, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29521001

RESUMO

This study represents the first attempt to combine surface TRAIL expression and doxorubicin co-encapsulation in a single drug delivery agent in the form of ultrasound-responsive microbubbles that shatter into fragments, or nanoshards, in an ultrasound beam. We compare customized microbubbles of different polymeric shell compositions, and investigate the effect of both shell composition and incorporation of doxorubicin on action against TRAIL-sensitive MDA-MB-231 and TRAIL-resistant MCF7 human breast adenocarcinoma cells. Ligation of TRAIL only significantly impacted MDA-MB-231 cells predominantly by apoptosis, and had minimal effect on MCF12A (normal control) cells. For all shell types, nanoshards had a greater effect (apoptotic death ranging from approximately 25% for 1 wt % LipidPEG to 50% for 100% PLA), reflecting the greater surface area and larger number of particles that ultrasound generates. Encapsulation of doxorubicin generated necrosis in all cell lines, but PEGylation produced less effective necrosis in all cell lines. Co-encapsulation of doxorubicin within the contrast agent shell increased MDA-MB-231 cell death to approximately 40-80%, representing a marked increase over TRAIL alone, reflecting the dramatic effect of shell composition. Additionally, shells that co-encapsulated TRAIL and doxorubicin resulted in approximately 30-60% death in TRAIL-resistant MCF7 human breast adenocarcinoma cells, compared with little apoptotic response in these cells from shells encapsulating TRAIL alone, demonstrating the sensitization effect of the drug. This work has resulted in production of a library of effective ultrasound-triggered, minimally immunogenic, targeted drug delivery agents for potential use in cancer therapy, and represents a promising multifaceted treatment to better serve the population with solid tumors. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1903-1915, 2018.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Microesferas , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Lipídeos/química , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Ultrassonografia
12.
Int J Oral Sci ; 10(2): 10, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29555901

RESUMO

Head and neck cancers become a severe threat to human's health nowadays and represent the sixth most common cancer worldwide. Surgery remains the first-line choice for head and neck cancer patients. Limited resectable tissue mass and complicated anatomy structures in the head and neck region put the surgeons in a dilemma between the extensive resection and a better quality of life for the patients. Early diagnosis and treatment of the pre-malignancies, as well as real-time in vivo detection of surgical margins during en bloc resection, could be leveraged to minimize the resection of normal tissues. With the understanding of the head and neck oncology, recent advances in optical hardware and reagents have provided unique opportunities for real-time pre-malignancies and cancer imaging in the clinic or operating room. Optical imaging in the head and neck has been reported using autofluorescence imaging, targeted fluorescence imaging, high-resolution microendoscopy, narrow band imaging and the Raman spectroscopy. In this study, we reviewed the basic theories and clinical applications of optical imaging for the diagnosis and treatment in the field of head and neck oncology with the goal of identifying limitations and facilitating future advancements in the field.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Imagem Óptica/métodos , Previsões , Humanos
13.
J Biomed Mater Res A ; 105(11): 3189-3196, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28771937

RESUMO

The composition of microcapsules designed for drug delivery significantly impacts their properties. Ultrasound contrast agents, consisting of stabilized microbubbles (MBs), have emerged as versatile potential drug delivery vehicles to both image and overcome challenges associated with systemic chemotherapy. In our development of polylactic acid MBs decorated with immune-shielding polyethylene glycol chains, we have shown that the balance between acoustic behavior and immune avoidance was scalable and amenable to two distinct PEGylation methods, either incorporation of 5 wt% PEGylated PLA or insertion of 1 wt% PEGylated lipid (LipidPEG) in the polymeric shell. Here we describe the effects of shell compositions on MB functionalization for use in targeted cancer therapy. We chose tumor necrosis factor-related apoptosis inducing ligand (TRAIL) as the targeting ligand, motivated by the ability to both target cells and selectively induce tumor cell death upon binding. Additionally, the MBs were designed to co-encapsulate the chemotherapeutic doxorubicin (Dox) within the shell that works with TRAIL to sensitize resistant cells. We have previously shown that the MBs shatter in response to ultrasound focused at the tumor site, delivering drug-eluting fragments. This study demonstrates the effect of shell characteristics and MB functionalization (TRAIL-ligated and Dox-loaded MBs) on the acoustic response of MBs, and the cumulative effect of shell type. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3189-3196, 2017.


Assuntos
Meios de Contraste/química , Sistemas de Liberação de Medicamentos/métodos , Microbolhas , Poliésteres/química , Polietilenoglicóis/química , Acústica , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Sonicação/métodos , Ligante Indutor de Apoptose Relacionado a TNF/química , Ondas Ultrassônicas
14.
Mol Pharm ; 14(10): 3448-3456, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28814080

RESUMO

Many cancer therapy regimes still rely heavily on the systemic administration of toxic chemotherapeutic agents. Ultrasound contrast agents consisting of microbubbles (MBs) have emerged as a drug delivery vehicle to overcome the challenges associated with systemic chemotherapy. Here, we describe the development of non-immunogenic, functionalized polylactic acid (PLA) MBs for use in targeted cancer therapy. Our previous studies have shown that the balance between acoustic behavior and improved immune avoidance was scalable and successful to different degrees with two different PEGylation methods and was best achieved using incorporation of PEG-PLA at 5 wt % and for a LipidPEG at 1 wt %. Capitalizing on this, we now attach a targeting ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which selectively induces tumor cell death upon binding to cancer cell-specific surface receptors, initiating a transmembrane apoptosis signal. Additionally, the functionalized MBs were designed to coencapsulate doxorubicin (Dox) that can be released from the polymer shell in response to ultrasound focused at the tumor site, shielding healthy tissues from toxicity while increasing the potency and efficiency of treatment to the tumor tissue. Ligation of TRAIL reduced the encapsulation efficiency for Dox compared to those of their non-ligated counterparts (p < 0.0001) by approximately 34% for 100% PLA, 23% for 5 wt % PEG-PLA, and 30% for the 1 wt % LipidPEG platform. All platforms exhibited a burst effect (<7%, p < 0.0001), and sustained release lasted for over 150 h. This work has resulted in a choice of effective ultrasound-triggered, non-immunogenic, targeted drug delivery agents for potential use in cancer therapy. These platforms have many advantages over the systemic administration of chemotherapeutic drugs and represent a promising treatment to better serve the population with solid cancerous tumors as a whole.


Assuntos
Antineoplásicos/administração & dosagem , Meios de Contraste/química , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Microbolhas , Neoplasias/tratamento farmacológico , Química Farmacêutica , Preparações de Ação Retardada/administração & dosagem , Composição de Medicamentos/métodos , Desenho de Fármacos , Humanos , Poliésteres/química , Polietilenoglicóis/química , Ligante Indutor de Apoptose Relacionado a TNF/química , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Ultrassonografia
15.
Mol Imaging Biol ; 19(3): 357-362, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28271367

RESUMO

Optical imaging methods have significant potential as effective intraoperative tools to visualize tissues, cells, and biochemical events aimed at objective assessment of the tumor margin and guiding the surgeon to adequately resect the tumor while sparing critical tissues. The wide variety of approaches to guide resection, the range of parameters that they detect, and the interdisciplinary nature involving biology, chemistry, engineering, and medicine suggested that there was a need for an organization that could review, discuss, refine, and help prioritize methods to optimize patient care and pharmaceutical and instrument development. To address these issues, the World Molecular Imaging Society created the Optical Surgical Navigation (OSN) interest group to bring together scientists, engineers, and surgeons to develop the field to benefit patients. Here, we provide an overview of approaches currently under clinical investigation for optical surgical navigation and offer our perspective on upcoming strategies.


Assuntos
Neoplasias/cirurgia , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodos , Meios de Contraste/química , Humanos , Nanopartículas/química , Imagem Óptica/instrumentação
16.
Laryngoscope Investig Otolaryngol ; 2(6): 447-452, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299522

RESUMO

Overview: Although the agreed-upon standard is circumferential pathology analysis of the interface between the resected specimen and the patient, there is currently no consensus on the optimal methodology to achieve this in head and neck cancer specimens. This is most commonly conducted by either sampling the wound bed after resection or obtaining samples from the specimen. Regardless of the technique, only a fraction of the area of interest can be sampled due to the labor-intensive nature of frozen sections. Objective: This review will cover and define the possible role for optical mapping of the surgical specimen using fluorescence imaging in head and neck cancer. Level of Evidence: NA.

17.
Biomaterials ; 103: 197-206, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388945

RESUMO

Contrast agents are currently being modified to combine diagnostic and therapeutic capabilities. For ultrasound (US) imaging with polymeric contrast agents, it is necessary to modify the shell to create "stealth" microbubbles but without these modifications sacrificing the agent's ability to interact with the focused US beam. We hypothesize that addition of the classic immune shielding molecule polyethylene glycol (PEG) to a polylactide (PLA) microbubble shell will affect the acoustic and physical properties of the resulting agents. In an effort to determine the best formulation to achieve a balance between stealth and acoustic activity, we compared two PEGylation techniques; addition of increasing amounts of PEG-PLA copolymer and employing incorporation of a PEG lipid (LipidPEG) into the shell. Loss of acoustic enhancement occurred in a dose-dependent manner for both types of PEGylated agents (loss of signal occurred at >5 wt% PEG-PLA and >1 wt% LipidPEG), while immune activation was also reduced in a dose-dependent manner for the PEG-PLA agents. This study shows that the balance between acoustic behavior and improved immune avoidance was scalable and successful to different degrees with both PEGylation methods, and was best achieved using for PEG-PLA at 5 wt% and for LipidPEG at 1 wt%. Studies are ongoing to evaluate the best method for the targeting and drug delivery capabilities of these agents for applications in cancer treatment. This study represents the basis for understanding the consequences of making modifications to the native polymeric shell.


Assuntos
Meios de Contraste/química , Meios de Contraste/uso terapêutico , Microbolhas , Polímeros/química , Sonicação/métodos , Ultrassonografia/métodos , Meios de Contraste/efeitos da radiação , Ondas de Choque de Alta Energia , Teste de Materiais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Nanomedicina Teranóstica/métodos
18.
Langmuir ; 31(43): 11858-67, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26446176

RESUMO

Ultrasound contrast agents are typically microbubbles (MB) with a gas core that is stabilized by a shell made of lipids, proteins, or polymers. The high impedance mismatch between the gas core and an aqueous environment produces strong contrast in ultrasound (US). Poly(lactic acid) (PLA) MB, previously developed in our laboratory, have been shown to be highly echogenic both in vitro and in vivo. Combining US with other imaging modalities such as fluorescence, magnetic resonance imaging (MRI), or computerized tomography (CT) could improve the accuracy of many US applications and provide more comprehensive diagnostic information. Furthermore, our MB have the capacity to house a drug in the PLA shell and create drug-loaded nanoparticles in situ when passing through an ultrasound beam. To create multimodal contrast agents, we hypothesized that the polymer shell of our PLA MB platform could accommodate additional payloads. In this study, we therefore modified our current MB by encapsulating nanoparticles including aqueous or organic quantum dots (QD), magnetic iron oxide nanoparticles (MNP), or gold nanoparticles (AuNP) to create bimodality platforms in a manner that minimally compromised the performance of each individual imaging technique.


Assuntos
Meios de Contraste , Imagem Multimodal , Nanopartículas/química , Polímeros/química , Animais , Linhagem Celular , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pontos Quânticos , Difração de Raios X
19.
Int J Pharm ; 494(1): 146-51, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26241754

RESUMO

Many injectables are not amenable to standard sterilization methods, which destroy sensitive materials. This is particularly true for ultrasound contrast agents (UCA) consisting of gas bubbles stabilized by a surfactant or polymer shell. We investigated a new method to achieve safe and effective sterilization in production by introducing dielectric-barrier discharge non-thermal plasma. A dielectric-barrier discharge was generated to first produce plasma-treated phosphate-buffered saline (PTPBS), which was used as a sterilant solution for our UCA SE61, avoiding direct heat, pressure, chemicals, or radiation. Treated samples were tested for acoustic properties in vitro and in a flow phantom, and for sterility by standard methods. Three minutes plasma treatment of phosphate-buffered saline (PBS) proved effective. The samples showed significant inactivation of inoculated bacteria upon PTPBS treatment as compared to un-treated-PBS (p=0.0022). The treated and untreated samples showed no statistical significance (p>0.05) in acoustic response or bubble diameter (mean±SEM: 2.52±0.31 µm). Nile Red was used to model intercalation of drug in the hydrophobic shell, intercalated successfully into SE61, and was unaffected by plasma treatment. The PTPBS completely sterilized suspensions of UCA, and it did not compromise the acoustic properties of the agent or its ability to retain a hydrophobic compound.


Assuntos
Meios de Contraste/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Injeções/métodos , Esterilização , Ultrassonografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA