Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968126

RESUMO

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Assuntos
Proteínas Fúngicas , Proteínas NLR , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Resistência à Doença/imunologia , Imunidade Vegetal , Bioengenharia/métodos , Magnaporthe/imunologia , Magnaporthe/genética , Magnaporthe/metabolismo , Ligação Proteica , Receptores Imunológicos/metabolismo , Ascomicetos
2.
PLoS Pathog ; 20(6): e1012277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38885263

RESUMO

Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.


Assuntos
Proteínas Fúngicas , Doenças das Plantas , Dedos de Zinco , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Oryza/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Filogenia
3.
Nat Plants ; 10(6): 971-983, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898164

RESUMO

Wheat blast, a devastating disease having spread recently from South America to Asia and Africa, is caused by Pyricularia oryzae (synonym of Magnaporthe oryzae) pathotype Triticum, which first emerged in Brazil in 1985. Rmg8 and Rmg7, genes for resistance to wheat blast found in common wheat and tetraploid wheat, respectively, recognize the same avirulence gene, AVR-Rmg8. Here we show that an ancestral resistance gene, which had obtained an ability to recognize AVR-Rmg8 before the differentiation of Triticum and Aegilops, has expanded its target pathogens. Molecular cloning revealed that Rmg7 was an allele of Pm4, a gene for resistance to wheat powdery mildew on 2AL, whereas Rmg8 was its homoeologue on 2BL ineffective against wheat powdery mildew. Rmg8 variants with the ability to recognize AVR-Rmg8 were distributed not only in Triticum spp. but also in Aegilops speltoides, Aegilops umbellulata and Aegilops comosa. This result suggests that the origin of resistance gene(s) recognizing AVR-Rmg8 dates back to the time before differentiation of A, B, S, U and M genomes, that is, ~5 Myr before the emergence of its current target, the wheat blast fungus. Phylogenetic analyses suggested that, in the evolutionary process thereafter, some of their variants gained the ability to recognize the wheat powdery mildew fungus and evolved into genes controlling dual resistance to wheat powdery mildew and wheat blast.


Assuntos
Ascomicetos , Resistência à Doença , Doenças das Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Ascomicetos/fisiologia , Genes de Plantas , Evolução Molecular , Aegilops/genética , Aegilops/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
4.
Plant Physiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828881

RESUMO

Plants recognize a variety of external signals and induce appropriate mechanisms to increase their tolerance to biotic and abiotic stresses. Precise recognition of attacking pathogens and induction of effective resistance mechanisms are critical functions for plant survival. Some molecular patterns unique to a certain group of microbes, microbe-associated molecular patterns (MAMPs), are sensed by plant cells as nonself molecules via pattern recognition receptors. While MAMPs of bacterial and fungal origin have been identified, reports on oomycete MAMPs are relatively limited. This study aimed to identify MAMPs from an oomycete pathogen Phytophthora infestans, the causal agent of potato late blight. Using reactive oxygen species (ROS) production and phytoalexin production in potato (Solanum tuberosum) as markers, two structurally different groups of elicitors, namely ceramides and diacylglycerols, were identified. P. infestans ceramides (Pi-Cer A, B, and D) induced ROS production, while diacylglycerol (Pi-DAG A and B), containing eicosapentaenoic acid (EPA) as a substructure, induced phytoalexins production in potato. The molecular patterns in Pi-Cers and Pi-DAGs essential for defense induction were identified as 9-methyl-4,8-sphingadienine (9Me-Spd) and 5,8,11,14-tetraene-type fatty acid (5,8,11,14-TEFA), respectively. These structures are not found in plants, but in oomycetes and fungi, indicating that they are microbe molecular patterns recognized by plants. When Arabidopsis (Arabidopsis thaliana) was treated with Pi-Cer D and EPA, partially overlapping but different sets of genes were induced. Furthermore, expression of some genes is upregulated only after the simultaneous treatment with Pi-Cer D and EPA, indicating that plants combine the signals from simultaneously recognized MAMPs to adapt their defense response to pathogens.

5.
Nat Commun ; 15(1): 4610, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816417

RESUMO

NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication.


Assuntos
Duplicação Gênica , Proteínas NLR , Oryza , Proteínas de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Morte Celular , Filogenia , Regulação da Expressão Gênica de Plantas
6.
Plant Cell ; 36(2): 447-470, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37820736

RESUMO

Plant nucleotide-binding leucine-rich repeat (NLRs) immune receptors directly or indirectly recognize pathogen-secreted effector molecules to initiate plant defense. Recognition of multiple pathogens by a single NLR is rare and usually occurs via monitoring for changes to host proteins; few characterized NLRs have been shown to recognize multiple effectors. The barley (Hordeum vulgare) NLR gene Mildew locus a (Mla) has undergone functional diversification, and the proteins encoded by different Mla alleles recognize host-adapted isolates of barley powdery mildew (Blumeria graminis f. sp. hordei [Bgh]). Here, we show that Mla3 also confers resistance to the rice blast fungus Magnaporthe oryzae in a dosage-dependent manner. Using a forward genetic screen, we discovered that the recognized effector from M. oryzae is Pathogenicity toward Weeping Lovegrass 2 (Pwl2), a host range determinant factor that prevents M. oryzae from infecting weeping lovegrass (Eragrostis curvula). Mla3 has therefore convergently evolved the capacity to recognize effectors from diverse pathogens.


Assuntos
Ascomicetos , Eragrostis , Hordeum , Magnaporthe , Virulência/genética , Hordeum/genética , Eragrostis/metabolismo , Plantas/metabolismo , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Genome ; : e20419, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093501

RESUMO

Maintaining genetic purity and true-to-type clone identification are important action steps in breeding programs. This study aimed to develop a universal set of kompetitive allele-specific polymerase chain reaction (KASP)-based single nucleotide polymorphism (SNP) markers for routine breeding activities. Ultra-low-density SNP markers were created using an initial set of 173,675 SNPs that were obtained from whole-genome resequencing of 333 diverse white Guinea yam (Dioscorea rotundata Poir) genotypes. From whole-genome resequencing data, 99 putative SNP markers were found and successfully converted to high-throughput KASP genotyping assays. The markers set was validated on 374 genotypes representing six yam species. Out of the 99 markers, 50 were highly polymorphic across the species and could distinguish different yam species and pedigree origins. The selected SNP markers classified the validation population based on the different yam species and identified potential duplicates within yam species. Through penalized analysis, the male parent of progenies involved in polycrosses was successfully predicted and validated. Our research was a trailblazer in validating KASP-based SNP assays for species identification, parental fingerprinting, and quality control (QC) and quality assurance (QA) in yam breeding programs.

8.
Breed Sci ; 73(4): 415-420, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38106505

RESUMO

DNA markers are indispensable tools in genetics and genomics research as well as in crop breeding, particularly for marker-assisted selection. Recent advances in next-generation sequencing technology have made it easier to obtain genome sequences for various crop species, enabling the large-scale identification of DNA polymorphisms among varieties, which in turn has made DNA marker design more accessible. However, existing primer design software is not suitable for designing many types of genome-wide DNA markers from next-generation sequencing data. Here, we describe the development of V-primer, high-throughput software for designing insertion/deletion, cleaved amplified polymorphic sequence, and single-nucleotide polymorphism (SNP) markers. We validated the applicability of these markers in different crops. In addition, we performed multiplex PCR targeted amplicon sequencing using SNP markers designed with V-primer. Our results demonstrate that V-primer facilitates the efficient and accurate design of primers and is thus a useful tool for genetics, genomics, and crop breeding. V-primer is freely available at https://github.com/ncod3/vprimer.

9.
Physiol Plant ; 175(5): e14052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882264

RESUMO

Basal plant immune responses are activated by the recognition of conserved microbe-associated molecular patterns (MAMPs), or breakdown molecules released from the plants after damage by pathogen penetration, so-called damage-associated molecular patterns (DAMPs). While chitin-oligosaccharide (CHOS), a primary component of fungal cell walls, is most known as MAMP, plant cell wall-derived oligosaccharides, cello-oligosaccharides (COS) from cellulose, and xylo-oligosaccharide (XOS) from hemicellulose are representative DAMPs. In this study, elicitor activities of COS prepared from cotton linters, XOS prepared from corn cobs, and chitin-oligosaccharide (CHOS) from crustacean shells were comparatively investigated. In Arabidopsis, COS, XOS, or CHOS treatment triggered typical defense responses such as reactive oxygen species (ROS) production, phosphorylation of MAP kinases, callose deposition, and activation of the defense-related transcription factor WRKY33 promoter. When COS, XOS, and CHOS were used at concentrations with similar activity in inducing ROS production and callose depositions, CHOS was particularly potent in activating the MAPK kinases and WRKY33 promoters. Among the COS and XOS with different degrees of polymerization, cellotriose and xylotetraose showed the highest activity for the activation of WRKY33 promoter. Gene ontology enrichment analysis of RNAseq data revealed that simultaneous treatment of COS, XOS, and CHOS (oligo-mix) effectively activates plant disease resistance. In practice, treatment with the oligo-mix enhanced the resistance of tomato to powdery mildew, but plant growth was not inhibited but rather tended to be promoted, providing evidence that treatment with the oligo-mix has beneficial effects on improving disease resistance in plants, making them a promising class of compounds for practical application.


Assuntos
Arabidopsis , Resistência à Doença , Espécies Reativas de Oxigênio/metabolismo , Plantas/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Quitina/farmacologia , Quitina/metabolismo , Doenças das Plantas/genética , Imunidade Vegetal
10.
Elife ; 122023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199729

RESUMO

A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector's host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.


Assuntos
Magnaporthe , Oryza , Resistência à Doença/genética , Receptores Imunológicos/metabolismo , Plantas/metabolismo , Doenças das Plantas/microbiologia , Magnaporthe/metabolismo , Proteínas de Plantas/química , Interações Hospedeiro-Patógeno
11.
G3 (Bethesda) ; 13(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37052949

RESUMO

Elucidating genotype-by-environment interactions is fundamental for understanding the interplay between genetic and environmental factors that shape complex traits in crops. Genotype-by-environment interactions are of practical importance, as they determine the performance of cultivars grown in different environments, prompting the need for an efficient approach for evaluating genotype-by-environment interactions. Here, we describe a method for genotype-by-environment detection that involves comparing linear mixed models. This method successfully detected genotype-by-environment interactions in rice (Oryza sativa) recombinant inbred lines grown at 3 locations. We identified a quantitative trait locus (QTL) on chromosome 3 that was associated with heading date, grain number, and leaf length. The effect of this QTL on plant growth-related traits varied with environmental conditions, indicating the presence of genotype-by-environment interactions. Therefore, our method enables a powerful genotype-by-environment detection pipeline that should facilitate the production of high-yielding crops in a given environment.


Assuntos
Oryza , Locos de Características Quantitativas , Humanos , Oryza/genética , Mapeamento Cromossômico/métodos , Interação Gene-Ambiente , Cromossomos Humanos Par 3 , Genótipo , Fenótipo , Produtos Agrícolas/genética
12.
Genes Genet Syst ; 97(5): 229-235, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36624071

RESUMO

Blast disease caused by the filamentous fungus Pyricularia oryzae (syn. Magnaporthe oryzae) is one of the most destructive diseases of rice (Oryza sativa L.) around the globe. An aus cultivar, Shoni, showed resistance against at least four Japanese P. oryzae isolates. To understand Shoni's resistance against the P. oryzae isolate Naga69-150, genetic analysis was carried out using recombinant inbred lines developed by a cross between Shoni and the japonica cultivar Hitomebore, which is susceptible to Naga69-150. The result indicated that the resistance was controlled by a single locus, which was named Pi-Shoni. A QTL analysis identified Pi-Shoni as being located in the telomeric region of chromosome 11. A candidate gene approach in the region indicated that Pi-Shoni corresponds to the previously cloned Pik locus, and we named this allele Pikps. Loss of gene function mediated by RNA interference demonstrated that a head-to-head-orientated pair of NBS-LRR receptor genes (Pikps-1 and Pikps-2) are required for the Pikps-mediated resistance. Amino acid sequence comparison showed that Pikps-1 is 99% identical to Pikp-1, while Pikps-2 is identical to Pikp-2. Pikps-1 had one amino acid substitution (Pro351Ser) in the NBS domain as compared to Pikp-1. The recognition specificity of Pikps against known AVR-Pik alleles is identical to that of Pikp.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Oryza/genética , Magnaporthe/genética , Alelos , Ascomicetos/genética
13.
PLoS Biol ; 21(1): e3001945, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656825

RESUMO

Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.


Assuntos
Oryza , Receptores Imunológicos , Receptores Imunológicos/metabolismo , Fungos/metabolismo , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno/genética , Oryza/genética , Oryza/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(43): e2210559119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252011

RESUMO

Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.


Assuntos
Magnaporthe , Oryza , Resistência à Doença , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Magnaporthe/genética , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Plantas/metabolismo , Zinco/metabolismo
15.
PLoS Pathog ; 18(9): e1010792, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36173975

RESUMO

When infecting plants, fungal pathogens secrete cell wall-degrading enzymes (CWDEs) that break down cellulose and hemicellulose, the primary components of plant cell walls. Some fungal CWDEs contain a unique domain, named the carbohydrate binding module (CBM), that facilitates their access to polysaccharides. However, little is known about how plants counteract pathogen degradation of their cell walls. Here, we show that the rice cysteine-rich repeat secretion protein OsRMC binds to and inhibits xylanase MoCel10A of the blast fungus pathogen Magnaporthe oryzae, interfering with its access to the rice cell wall and degradation of rice xylan. We found binding of OsRMC to various CBM1-containing enzymes, suggesting that it has a general role in inhibiting the action of CBM1. OsRMC is localized to the apoplast, and its expression is strongly induced in leaves infected with M. oryzae. Remarkably, knockdown and overexpression of OsRMC reduced and enhanced rice defense against M. oryzae, respectively, demonstrating that inhibition of CBM1-containing fungal enzymes by OsRMC is crucial for rice defense. We also identified additional CBM-interacting proteins (CBMIPs) from Arabidopsis thaliana and Setaria italica, indicating that a wide range of plants counteract pathogens through this mechanism.


Assuntos
Arabidopsis , Oryza , Celulose , Cisteína , Proteínas Fúngicas/genética , Oryza/genética , Xilanos
16.
Plant Cell Physiol ; 63(11): 1667-1678, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-35876055

RESUMO

A rhizomatous Dioscorea crop 'Edo-dokoro' was described in old records of Japan, but its botanical identity has not been characterized. We found that Edo-dokoro is still produced by four farmers in Tohoku-machi of the Aomori prefecture, Japan. The rhizomes of Edo-dokoro are a delicacy to the local people and are sold in the markets. Morphological characters of Edo-dokoro suggest its hybrid origin between the two species, Dioscorea tokoro and Dioscorea tenuipes. Genome analysis revealed that Edo-dokoro likely originated by hybridization of a male D. tokoro to a female D. tenuipes, followed by a backcross with a male plant of D. tokoro. Edo-dokoro is a typical minor crop possibly maintained for more than 300 years but now almost forgotten by the public. We hypothesize that there are many such uncharacterized genetic heritages passed over generations by small-scale farmers that await serious scientific investigation for future use and improvement by using modern genomics information.


Assuntos
Dioscorea , Dioscorea/genética , Genoma de Planta/genética , Genômica , Hibridização Genética , Plantas/genética
17.
Proc Natl Acad Sci U S A ; 119(27): e2116896119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771942

RESUMO

Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.


Assuntos
Evolução Molecular , Magnaporthe , Proteínas NLR , Oryza , Doenças das Plantas , Proteínas de Plantas , Receptores Imunológicos , Ligação Genética , Interações Hospedeiro-Patógeno/imunologia , Magnaporthe/genética , Magnaporthe/patogenicidade , Proteínas NLR/genética , Proteínas NLR/imunologia , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia
18.
Mol Plant Pathol ; 23(6): 845-854, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35257477

RESUMO

The plant extracellular space, including the apoplast and plasma membrane, is the initial site of plant-pathogen interactions. Pathogens deliver numerous secreted proteins, called effectors, into this region to suppress plant immunity and establish infection. Downy mildew caused by the oomycete pathogen Sclerospora graminicola (Sg) is an economically important disease of Poaceae crops including foxtail millet (Setaria italica). We previously reported the genome sequence of Sg and showed that the jacalin-related lectin (JRL) gene family has significantly expanded in this lineage. However, the biological functions of JRL proteins remained unknown. Here, we show that JRL from Sg (SgJRL) functions as an apoplastic virulence effector. We identified eight SgJRLs by protein mass spectrometry analysis of extracellular fluid from Sg-inoculated foxtail millet leaves. SgJRLs consist of a jacalin-like lectin domain and an N-terminal putative secretion signal; SgJRL expression is induced by Sg infection. Heterologous expression of three SgJRLs with N-terminal secretion signal peptides in Nicotiana benthamiana enhanced the virulence of the pathogen Phytophthora palmivora inoculated onto the same leaves. Of the three SgJRLs, SG06536 fused with green fluorescent protein (GFP) localized to the apoplastic space in N. benthamiana leaves. INF1-mediated induction of defence-related genes was suppressed by co-expression of SG06536-GFP. These findings suggest that JRLs are novel apoplastic effectors that contribute to pathogenicity by suppressing plant defence responses.


Assuntos
Lectinas , Phytophthora , Doenças das Plantas , Lectinas de Plantas , Virulência
19.
PeerJ ; 10: e13170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321412

RESUMO

Summary: Bulked segregant analysis implemented in MutMap and QTL-seq is a powerful and efficient method to identify loci contributing to important phenotypic traits. However, the previous pipelines were not user-friendly to install and run. Here, we describe new pipelines for MutMap and QTL-seq. These updated pipelines are approximately 5-8 times faster than the previous pipeline, are easier for novice users to use, and can be easily installed through bioconda with all dependencies. Availability: The new pipelines of MutMap and QTL-seq are written in Python and can be installed via bioconda. The source code and manuals are available online (MutMap: https://github.com/YuSugihara/MutMap, QTL-seq: https://github.com/YuSugihara/QTL-seq).


Assuntos
Locos de Características Quantitativas , Software , Locos de Características Quantitativas/genética , Mapeamento Cromossômico/métodos , Fenótipo
20.
BMC Plant Biol ; 22(1): 75, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183127

RESUMO

BACKGROUND: Plastome (Plastid genome) sequences provide valuable markers for surveying evolutionary relationships and population genetics of plant species. Papilionoideae (papilionoids) has different nucleotide and structural variations in plastomes, which makes it an ideal model for genome evolution studies. Therefore, by sequencing the complete chloroplast genome of Onobrychis gaubae in this study, the characteristics and evolutionary patterns of plastome variations in IR-loss clade were compared. RESULTS: In the present study, the complete plastid genome of O. gaubae, endemic to Iran, was sequenced using Illumina paired-end sequencing and was compared with previously known genomes of the IRLC species of legumes. The O. gaubae plastid genome was 122,688 bp in length and included a large single-copy (LSC) region of 81,486 bp, a small single-copy (SSC) region of 13,805 bp and one copy of the inverted repeat (IRb) of 29,100 bp. The genome encoded 110 genes, including 76 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosome RNA (rRNA) genes and possessed 83 simple sequence repeats (SSRs) and 50 repeated structures with the highest proportion in the LSC. Comparative analysis of the chloroplast genomes across IRLC revealed three hotspot genes (ycf1, ycf2, clpP) which could be used as DNA barcode regions. Moreover, seven hypervariable regions [trnL(UAA)-trnT(UGU), trnT(GGU)-trnE(UUC), ycf1, ycf2, ycf4, accD and clpP] were identified within Onobrychis, which could be used to distinguish the Onobrychis species. Phylogenetic analyses revealed that O. gaubae is closely related to Hedysarum. The complete O. gaubae genome is a valuable resource for investigating evolution of Onobrychis species and can be used to identify related species. CONCLUSIONS: Our results reveal that the plastomes of the IRLC are dynamic molecules and show multiple gene losses and inversions. The identified hypervariable regions could be used as molecular markers for resolving phylogenetic relationships and species identification and also provide new insights into plastome evolution across IRLC.


Assuntos
Fabaceae/genética , Genoma de Cloroplastos , Filogenia , Uso do Códon , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Irã (Geográfico) , Sequências Repetitivas de Ácido Nucleico , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA