Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicon ; 243: 107721, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38636612

RESUMO

Tetrodotoxin (TTX) is a potent neurotoxin causing human intoxications from contaminated seafood worldwide and is of emerging concern in Europe. Shellfish have been shown to contain varying TTX concentrations globally, with concentrations typically higher in Pacific oysters Crassostrea gigas in Europe. Despite many decades of research, the source of TTX remains unknown, with bacterial or algal origins having been suggested. The aim of this study was to identify potential source organisms causing TTX contamination in Pacific oysters in French coastal waters, using three different techniques. Oysters were deployed in cages from April to September 2021 in an estuary where TTX was previously detected. Microscopic analyses of water samples were used to investigate potential microalgal blooms present prior or during the peak in TTX. Differences in the bacterial communities from oyster digestive glands (DG) and remaining flesh were explored using metabarcoding, and lastly, droplet digital PCR assays were developed to investigate the presence of Cephalothrix sp., one European TTX-bearing species in the DG of toxic C. gigas. Oysters analysed by liquid chromatography-tandem mass spectrometry contained quantifiable levels of TTX over a three-week period (24 June-15 July 2021), with concentrations decreasing in the DG from 424 µg/kg for the first detection to 101 µg/kg (equivalent to 74 to 17 µg/kg of total flesh), and trace levels being detected until August 13, 2021. These concentrations are the first report of the European TTX guidance levels being exceeded in French shellfish. Microscopy revealed that some microalgae bloomed during the TTX peak, (e.g., Chaetoceros spp., reaching 40,000 cells/L). Prokaryotic metabarcoding showed increases in abundance of Rubritaleaceae (genus Persicirhabdus) and Neolyngbya, before and during the TTX peak. Both phyla have previously been described as possible TTX-producers and should be investigated further. Droplet digital PCR analyses were negative for the targeted TTX-bearing genus Cephalothrix.


Assuntos
Reação em Cadeia da Polimerase , Tetrodotoxina , Tetrodotoxina/análise , Animais , França , Microscopia , Crassostrea , Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos , Microalgas , Estações do Ano
2.
Harmful Algae ; 133: 102607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485441

RESUMO

Domoic acid (DA) is a potent neurotoxin produced by diatoms of the genus Pseudo-nitzschia and is responsible for Amnesic Shellfish Poisoning (ASP) in humans. Some fishery resources of high commercial value, such as the king scallop Pecten maximus, are frequently exposed to toxic Pseudo-nitzschia blooms and are capable of accumulating high amounts of DA, retaining it for months or even a few years. This poses a serious threat to public health and a continuous economical risk due to fishing closures of this resource in the affected areas. Recently, it was hypothesized that trapping of DA within autophagosomic-vesicles could be one reason explaining the long retention of the remaining toxin in P. maximus digestive gland. To test this idea, we follow the kinetics of the subcellular localization of DA in the digestive glands of P. maximus during (a) the contamination process - with sequential samplings of scallops reared in the field during 234 days and naturally exposed to blooms of DA-producing Pseudo-nitzschia australis, and (b) the decontamination process - where highly contaminated scallops were collected after a natural bloom of toxic P. australis and subjected to DA-depuration in the laboratory for 60 days. In the digestive gland, DA-depuration rate (0.001 day-1) was much slower than contamination kinetics. The subcellular analyses revealed a direct implication of early autophagy in DA sequestration throughout contamination (r = 0.8, P < 0.05), while the presence of DA-labeled residual bodies (late autophagy) appeared to be strongly and significantly related to slow DA-depuration (r = -0.5) resembling an analogous DA-tattooing in the digestive glands of P. maximus. This work provides new evidence about the potential physiological mechanisms involved in the long retention of DA in P. maximus and represents the baseline to explore procedures to accelerate decontamination in this species.


Assuntos
Diatomáceas , Ácido Caínico/análogos & derivados , Pecten , Pectinidae , Intoxicação por Frutos do Mar , Tatuagem , Animais , Humanos , Toxinas Marinhas
3.
Aquat Toxicol ; 266: 106793, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071899

RESUMO

Despite the deleterious effects of the phycotoxin domoic acid (DA) on human health, and the permanent threat of blooms of the toxic Pseudo-nitzschia sp. over commercially important fishery-resources, knowledge regarding the physiological mechanisms behind the profound differences in accumulation and depuration of this toxin in contaminated invertebrates remain very scarce. In this work, a comparative analysis of accumulation, isomer content, and subcellular localization of DA in different invertebrate species was performed. Samples of scallops Pecten maximus and Aequipecten opercularis, clams Donax trunculus, slippersnails Crepidula fornicata, and seasquirts Asterocarpa sp. were collected after blooms of the same concentration of toxic Pseudo-nitzschia australis. Differences (P < 0.05) in DA accumulation were found, wherein P. maximus showed up to 20-fold more DA in the digestive gland than the other species. Similar profiles of DA isomers were found between P. maximus and A. opercularis, whereas C. fornicata was the species with the highest biotransformation rate (∼10 %) and D. trunculus the lowest (∼4 %). DA localization by immunohistochemical analysis revealed differences (P < 0.05) between species: in P. maximus, DA was detected mainly within autophagosome-like vesicles in the cytoplasm of digestive cells, while in A. opercularis and C. fornicata significant DA immunoreactivity was found in post-autophagy residual bodies. A slight DA staining was found free within the cytoplasm of the digestive cells of D. trunculus and Asterocarpa sp. The Principal Component Analysis revealed similarities between pectinids, and a clear distinction of the rest of the species based on their capabilities to accumulate, biotransform, and distribute the toxin within their tissues. These findings contribute to improve the understanding of the inter-specific differences concerning the contamination-decontamination kinetics and the fate of DA in invertebrate species.


Assuntos
Diatomáceas , Pectinidae , Poluentes Químicos da Água , Animais , Humanos , Toxinas Marinhas/toxicidade , Poluentes Químicos da Água/toxicidade , Diatomáceas/metabolismo , Ácido Caínico/toxicidade , Ácido Caínico/análise , Ácido Caínico/metabolismo , Pectinidae/metabolismo
4.
Mar Drugs ; 21(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37623716

RESUMO

Shellfish accumulate microalgal toxins, which can make them unsafe for human consumption. In France, in accordance with EU regulations, three groups of marine toxins are currently under official monitoring: lipophilic toxins, saxitoxins, and domoic acid. Other unregulated toxin groups are also present in European shellfish, including emerging lipophilic and hydrophilic marine toxins (e.g., pinnatoxins, brevetoxins) and the neurotoxin ß-N-methylamino-L-alanine (BMAA). To acquire data on emerging toxins in France, the monitoring program EMERGTOX was set up along the French coasts in 2018. Three new broad-spectrum LC-MS/MS methods were developed to quantify regulated and unregulated lipophilic and hydrophilic toxins and the BMAA group in shellfish (bivalve mollusks and gastropods). A single-laboratory validation of each of these methods was performed. Additionally, these specific, reliable, and sensitive operating procedures allowed the detection of groups of EU unregulated toxins in shellfish samples from French coasts: spirolides (SPX-13-DesMeC, SPX-DesMeD), pinnatoxins (PnTX-G, PnTX-A), gymnodimines (GYM-A), brevetoxins (BTX-2, BTX-3), microcystins (dmMC-RR, MC-RR), anatoxin, cylindrospermopsin and BMAA/DAB. Here, we present essentially the results of the unregulated toxins obtained from the French EMERGTOX monitoring plan during the past five years (2018-2022). Based on our findings, we outline future needs for monitoring to protect consumers from emerging unregulated toxins.


Assuntos
Frutos do Mar , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Toxinas Marinhas/toxicidade , França
5.
Harmful Algae ; 125: 102426, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220980

RESUMO

At the end of July 2021, a bloom of Lingulodinium polyedra developed along the French Atlantic coast and lasted six weeks. The REPHY monitoring network and the citizen participation project PHENOMER contributed to its observation. A maximum concentration of 3,600,000 cells/L was reached on the 6th of September, a level never recorded on French coastlines. Satellite observation confirmed that the bloom reached its highest abundance and spatial extension early September, covering about 3200 km2 on the 4th of September. Cultures were established, and morphology and ITS-LSU sequencing identified the species as L. polyedra. The thecae displayed the characteristic tabulation and sometimes a ventral pore. The pigment composition of the bloom was similar to that of cultured L. polyedra, confirming that phytoplankton biomass was dominated by this species. The bloom was preceded by Leptocylindrus sp., developed over Lepidodinium chlorophorum, and was succeeded by elevated Noctiluca scintillans concentrations. Afterwards, relatively high abundance of Alexandrium tamarense were observed in the embayment where the bloom started. Unusually high precipitation during mid-July increased river discharges from the Loire and Vilaine rivers, which likely fueled phytoplankton growth by providing nutrients. Water masses with high numbers of dinoflagellates were characterized by high sea surface temperature and thermohaline stratification. The wind was low during the bloom development, before drifting it offshore. Cysts were observed in the plankton towards the end of the bloom, with concentrations up to 30,000 cysts/L and relative abundances up to 99%. The bloom deposited a seed bank, with cyst concentrations up to 100,000 cysts/g dried sediment, particularly in fine-grained sediments. The bloom caused hypoxia events, and concentrations of yessotoxins up to 747 µg/kg were recorded in mussels, below the safety threshold of 3,750 µg/kg. Oysters, clams and cockles also were contaminated with yessotoxins, but at lower concentrations. The established cultures did not produce yessotoxins at detectable levels, although yessotoxins were detected in the sediment. The unusual environmental summertime conditions that triggered the bloom, as well as the establishment of considerable seed banks, provide important findings to understand future harmful algal blooms along the French coastline.


Assuntos
Dinoflagellida , Fitoplâncton , Proliferação Nociva de Algas , Biomassa
6.
Mar Drugs ; 19(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356818

RESUMO

In France, four groups of lipophilic toxins are currently regulated: okadaic acid/dinophysistoxins, pectenotoxins, yessotoxins and azaspiracids. However, many other families of toxins exist, which can be emerging toxins. Emerging toxins include both toxins recently detected in a specific area of France but not regulated yet (e.g., cyclic imines, ovatoxins) or toxins only detected outside of France (e.g., brevetoxins). To anticipate the introduction to France of these emerging toxins, a monitoring program called EMERGTOX was set up along the French coasts in 2018. The single-laboratory validation of this approach was performed according to the NF V03-110 guidelines by building an accuracy profile. Our specific, reliable and sensitive approach allowed us to detect brevetoxins (BTX-2 and/or BTX-3) in addition to the lipophilic toxins already regulated in France. Brevetoxins were detected for the first time in French Mediterranean mussels (Diana Lagoon, Corsica) in autumn 2018, and regularly every year since during the same seasons (autumn, winter). The maximum content found was 345 µg (BTX-2 + BTX-3)/kg in mussel digestive glands in November 2020. None were detected in oysters sampled at the same site. In addition, a retroactive analysis of preserved mussels demonstrated the presence of BTX-3 in mussels from the same site sampled in November 2015. The detection of BTX could be related to the presence in situ at the same period of four Karenia species and two raphidophytes, which all could be potential producers of these toxins. Further investigations are necessary to understand the origin of these toxins.


Assuntos
Bivalves , Monitoramento Ambiental , Toxinas Marinhas/química , Oxocinas/química , Animais , Organismos Aquáticos , França , Mar Mediterrâneo , Alimentos Marinhos
7.
Parasit Vectors ; 11(1): 119, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499746

RESUMO

BACKGROUND: Microcell parasites are small intracellular protozoans mostly detected in molluscs and can be associated with mortalities. In 2010 and 2011, strong increases in mortality events were reported in different wild beds of the wedge clam Donax trunculus Linnaeus, along the Atlantic coast of France and the presence of potential pathogens, including microcells, was investigated. METHODS: Clams collected in different beds showing mortality were examined by histology. Based on histological observations, confirmatory analyses were carried out, including transmission electron microscopy (TEM) and molecular characterization. RESULTS: Histological analyses revealed the presence of small protozoans similar to microcell parasites in different tissues of Donax trunculus, particularly in muscular and connective tissues. TEM examination confirmed the intracellular localization of the protozoans. Moreover, the lack of haplosporosomes and mitochondria suggested that the observed parasites belong to the genus Mikrocytos Farley, Wolf & Elston, 1988. Mikrocytos genus-specific PCR and in situ hybridization results supported the microscopic observations. Sequence fragments of the 18S rRNA gene shared 75-83% identity with the different Mikrocytos spp. described previously, including Mikrocytos mackini Farley, Wolf & Elston, 1988 and M. boweri Abbott, Meyer, Lowe, Kim & Johnson, 2014. Phylogenetic analyses confirmed that the microcell parasites observed in Donax trunculus in France belong to the genus Mikrocytos and suggest the existence of two distinct species. CONCLUSIONS: Based on morphological, ultrastructural, molecular data and host information, the two microcell parasites detected in Donax trunculus belong to the genus Mikrocytos and are distinct from previously described members of this genus. This is the first report of Mikrocytos spp. found in France and infecting the clam Donax trunculus. Mikrocytos veneroïdes n. sp. was detected in different wild beds and Mikrocytos donaxi n. sp. was detected only in Audierne Bay.


Assuntos
Bivalves/parasitologia , Doenças Parasitárias em Animais/mortalidade , Animais , França , Interações Hospedeiro-Parasita , Hibridização In Situ , Parasitos , Doenças Parasitárias em Animais/epidemiologia , Doenças Parasitárias em Animais/parasitologia , Doenças Parasitárias em Animais/patologia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA