Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 4: 136, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312053

RESUMO

The blood-brain barrier (BBB) is a specialized vascular interface that restricts the entry of many compounds into brain. This is accomplished through the sealing of vascular endothelial cells together with tight junction proteins to prevent paracellular diffusion. In addition, the BBB has a high degree of expression of numerous efflux transporters which actively extrude compounds back into blood. However, when a metastatic lesion develops in brain the vasculature is typically compromised with increases in passive permeability (blood-tumor barrier; BTB). What is not well documented is to what degree active efflux retains function at the BTB despite the changes observed in passive permeability. In addition, there have been previous reports documenting both increased and decreased expression of P-glycoprotein (P-gp) in lesion vasculature. Herein, we simultaneously administer a passive diffusion marker ((14)C-AIB) and a tracer subject to P-gp efflux (rhodamine 123) into a murine preclinical model of brain metastases of breast cancer. We observed that the metastatic lesions had similar expression (p > 0.05; n = 756-1214 vessels evaluated) at the BBB and the BTB. Moreover, tissue distribution of R123 was not significantly (p > 0.05) different between normal brain and the metastatic lesion. It is possible that the similar expression of P-gp on the BBB and the BTB contribute to this phenomenon. Additionally we observed P-gp expression at the metastatic cancer cells adjacent to the vasculature which may also contribute to reduced R123 uptake into the lesion. The data suggest that despite the disrupted integrity of the BTB, efflux mechanisms appear to be intact, and may be functionally comparable to the normal BBB. The BTB is a significant hurdle to delivering drugs to brain metastasis.

2.
Mol Cancer Ther ; 12(11): 2389-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002934

RESUMO

Brain (central nervous system; CNS) metastases pose a life-threatening problem for women with advanced metastatic breast cancer. It has recently been shown that the vasculature within preclinical brain metastasis model markedly restricts paclitaxel delivery in approximately 90% of CNS lesions. Therefore to improve efficacy, we have developed an ultra-small hyaluronic acid (HA) paclitaxel nanoconjugate (∼5 kDa) that can passively diffuse across the leaky blood-tumor barrier and then be taken up into cancer cells (MDA-MB-231Br) via CD44 receptor-mediated endocytocis. Using CD44 receptor-mediated endocytosis as an uptake mechanism, HA-paclitaxel was able to bypass p-glycoprotein-mediated efflux on the surface of the cancer cells. In vitro cytoxicity of the conjugate and free paclitaxel were similar in that they (i) both caused cell-cycle arrest in the G2-M phase, (ii) showed similar degrees of apoptosis induction (cleaved caspase), and (iii) had similar IC50 values when compared with paclitaxel in MTT assay. A preclinical model of brain metastases of breast cancer using intracardiac injections of Luc-2 transfected MDA-MB-231Br cells was used to evaluate in vivo efficacy of the nanoconjugate. The animals administered with HA-paclitaxel nanoconjugate had significantly longer overall survival compared with the control and the paclitaxel-treated group (P < 0.05). This study suggests that the small molecular weight HA-paclitaxel nanoconjugates can improve standard chemotherapeutic drug efficacy in a preclinical model of brain metastases of breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Ácido Hialurônico/farmacologia , Nanoconjugados , Paclitaxel/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/farmacocinética , Células MCF-7 , Neoplasias Mamárias Experimentais , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA