Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Synchrotron Radiat ; 28(Pt 3): 939-947, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950002

RESUMO

Beamline I22 at Diamond Light Source is dedicated to the study of soft-matter systems from both biological and materials science. The beamline can operate in the range 3.7 keV to 22 keV for transmission SAXS and 14 keV to 20 keV for microfocus SAXS with beam sizes of 240 µm × 60 µm [full width half-maximum (FWHM) horizontal (H) × vertical (V)] at the sample for the main beamline, and approximately 10 µm × 10 µm for the dedicated microfocusing platform. There is a versatile sample platform for accommodating a range of facilities and user-developed sample environments. The high brilliance of the insertion device source on I22 allows structural investigation of materials under extreme environments (for example, fluid flow at high pressures and temperatures). I22 provides reliable access to millisecond data acquisition timescales, essential to understanding kinetic processes such as protein folding or structural evolution in polymers and colloids.

2.
Bone ; 131: 115111, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31726107

RESUMO

As bone is used in a dynamic mechanical environment, understanding the structural origins of its time-dependent mechanical behaviour - and the alterations in metabolic bone disease - is of interest. However, at the scale of the mineralized fibrillar matrix (nanometre-level), the nature of the strain-rate dependent mechanics is incompletely understood. Here, we investigate the fibrillar- and mineral-deformation behaviour in a murine model of Cushing's syndrome, used to understand steroid induced osteoporosis, using synchrotron small- and wide-angle scattering/diffraction combined with in situ tensile testing at three strain rates ranging from 10-4 to 10-1 s-1. We find that the effective fibril- and mineral-modulus and fibrillar-reorientation show no significant increase with strain-rate in osteoporotic bone, but increase significantly in normal (wild-type) bone. By applying a fibril-lamellar two-level structural model of bone matrix deformation to fit the results, we obtain indications that altered collagen-mineral interactions at the nanoscale - along with altered fibrillar orientation distributions - may be the underlying reason for this altered strain-rate sensitivity. Our results suggest that an altered strain-rate sensitivity of the bone matrix in osteoporosis may be one of the contributing factors to reduced mechanical competence in such metabolic bone disorders, and that increasing this sensitivity may improve biomechanical performance.


Assuntos
Nanoestruturas , Osteoporose , Animais , Matriz Óssea , Osso e Ossos , Camundongos , Osteoporose/induzido quimicamente , Esteroides , Estresse Mecânico
3.
Acta Biomater ; 76: 295-307, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29902593

RESUMO

Glucocorticoid-induced osteoporosis (GIOP) is a major secondary form of osteoporosis, with the fracture risk significantly elevated - at similar levels of bone mineral density - in patients taking glucocorticoids compared with non-users. The adverse bone structural changes at multiple hierarchical levels in GIOP, and their mechanistic consequences leading to reduced load-bearing capacity, are not clearly understood. Here we combine experimental X-ray nanoscale mechanical imaging with analytical modelling of the bone matrix mechanics to determine mechanisms causing bone material quality deterioration during development of GIOP. In situ synchrotron small-angle X-ray diffraction combined with tensile testing was used to measure nanoscale deformation mechanisms in a murine model of GIOP, due to a corticotrophin-releasing hormone promoter mutation, at multiple ages (8-, 12-, 24- and 36 weeks), complemented by quantitative micro-computed tomography and backscattered electron imaging to determine mineral concentrations. We develop a two-level hierarchical model of the bone matrix (mineralized fibril and lamella) to predict fibrillar mechanical response as a function of architectural parameters of the mineralized matrix. The fibrillar elastic modulus of GIOP-bone is lower than healthy bone throughout development, and nearly constant in time, in contrast to the progressively increasing stiffness in healthy bone. The lower mineral platelet aspect ratio value for GIOP compared to healthy bone in the multiscale model can explain the fibrillar deformation. Consistent with this result, independent measurement of mineral platelet lengths from wide-angle X-ray diffraction finds a shorter mineral platelet length in GIOP. Our results show how lowered mineralization combined with altered mineral nanostructure in GIOP leads to lowered mechanical competence. SIGNIFICANCE STATEMENT: Increased fragility in musculoskeletal disorders like osteoporosis are believed to arise due to alterations in bone structure at multiple length-scales from the organ down to the supramolecular-level, where collagen molecules and elongated mineral nanoparticles form stiff fibrils. However, the nature of these molecular-level alterations are not known. Here we used X-ray scattering to determine both how bone fibrils deform in secondary osteoporosis, as well as how the fibril orientation and mineral nanoparticle structure changes. We found that osteoporotic fibrils become less stiff both because the mineral nanoparticles became shorter and less efficient at transferring load from collagen, and because the fibrils are more randomly oriented. These results will help in the design of new composite musculoskeletal implants for bone repair.


Assuntos
Densidade Óssea/efeitos dos fármacos , Matriz Óssea/metabolismo , Glucocorticoides/efeitos adversos , Osteoporose , Animais , Matriz Óssea/patologia , Modelos Animais de Doenças , Feminino , Glucocorticoides/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Osteoporose/induzido quimicamente , Osteoporose/metabolismo , Osteoporose/patologia
4.
J Appl Crystallogr ; 50(Pt 6): 1800-1811, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29217992

RESUMO

Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors.

5.
Nanoscale ; 9(31): 11249-11260, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28753215

RESUMO

Determining the in situ 3D nano- and microscale strain and reorientation fields in hierarchical nanocomposite materials is technically very challenging. Such a determination is important to understand the mechanisms enabling their functional optimization. An example of functional specialization to high dynamic mechanical resistance is the crustacean stomatopod cuticle. Here we develop a new 3D X-ray nanostrain reconstruction method combining analytical modelling of the diffraction signal, fibre-composite theory and in situ deformation, to determine the hitherto unknown nano- and microscale deformation mechanisms in stomatopod tergite cuticle. Stomatopod cuticle at the nanoscale consists of mineralized chitin fibres and calcified protein matrix, which form (at the microscale) plywood (Bouligand) layers with interpenetrating pore-canal fibres. We uncover anisotropic deformation patterns inside Bouligand lamellae, accompanied by load-induced fibre reorientation and pore-canal fibre compression. Lamination theory was used to decouple in-plane fibre reorientation from diffraction intensity changes induced by 3D lamellae tilting. Our method enables separation of deformation dynamics at multiple hierarchical levels, a critical consideration in the cooperative mechanics characteristic of biological and bioinspired materials. The nanostrain reconstruction technique is general, depending only on molecular-level fibre symmetry and can be applied to the in situ dynamics of advanced nanostructured materials with 3D hierarchical design.

6.
Sci Rep ; 7(1): 6405, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743929

RESUMO

Well-ordered and highly interconnected 3D semiconducting nanostructures of bismuth sulphide were prepared from inverse cubic lipid mesophases. This route offers significant advantages in terms of mild conditions, ease of use and electrode architecture over other routes to nanomaterials synthesis for device applications. The resulting 3D bicontinous nanowire network films exhibited a single diamond topology of symmetry Fd3m (Q227) which was verified by Small angle X-ray scattering (SAXS) and Transmission electron microscopy (TEM) and holds great promise for potential applications in optoelectronics, photovoltaics and thermoelectrics.

7.
Nanoscale ; 9(29): 10227-10232, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28665429

RESUMO

In this paper, we monitor the real-time growth of mesoporous platinum during electrodeposition using small-angle X-ray scattering (SAXS). Previously, we have demonstrated that platinum films featuring the 'single diamond' (Fd3m) morphology can be produced from 'double diamond' (Pn3m) lipid cubic phase templates; the difference in symmetry provides additional scattering signals unique to the metal. Taking advantage of this, we present simultaneous in situ SAXS/electrochemical measurement as the platinum nanostructures grow within the lipid template. This measurement allows us to correlate the nanostructure appearance with the deposition current density and to monitor the evolution of the orientational and lateral ordering of the lipid and platinum during deposition and after template removal. In other periodic metal nanomaterials deposited within any of the normal topology liquid crystal, mesoporous silica or block copolymer templates previously published, the template and emerging metal have the same symmetry, so such a study has not been possible previously.

8.
J Appl Crystallogr ; 50(Pt 3): 959-966, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28656043

RESUMO

A software package for the calibration and processing of powder X-ray diffraction and small-angle X-ray scattering data is presented. It provides a multitude of data processing and visualization tools as well as a command-line scripting interface for on-the-fly processing and the incorporation of complex data treatment tasks. Customizable processing chains permit the execution of many data processing steps to convert a single image or a batch of raw two-dimensional data into meaningful data and one-dimensional diffractograms. The processed data files contain the full data provenance of each process applied to the data. The calibration routines can run automatically even for high energies and also for large detector tilt angles. Some of the functionalities are highlighted by specific use cases.

9.
Phys Chem Chem Phys ; 18(20): 14063-73, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27157993

RESUMO

In recent years many studies into green solvents have been undertaken and deep eutectic solvents (DES) have emerged as sustainable and green alternatives to conventional solvents since they may be formed from cheap non-toxic organic precursors. In this study we examine amphiphile behaviour in these novel media to test our understanding of amphiphile self-assembly within environments that have an intermediate polarity between polar and non-polar extremes. We have built on our recently published results to present a more detailed structural characterisation of micelles of sodium dodecylsulfate (SDS) within the eutectic mixture of choline chloride and urea. Here we show that SDS adopts an unusual cylindrical aggregate morphology, unlike that seen in water and other polar solvents. A new morphology transition to shorter aggregates was found with increasing concentration. The self-assembly of SDS was also investigated in the presence of water; which promotes the formation of shorter aggregates.

10.
Sci Rep ; 6: 26249, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27211574

RESUMO

The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales.


Assuntos
Quitina/química , Exoesqueleto/química , Exoesqueleto/ultraestrutura , Animais , Quitina/ultraestrutura , Simulação por Computador , Crustáceos/química , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Modelos Moleculares , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanofibras/química , Nanofibras/ultraestrutura , Síncrotrons , Difração de Raios X
11.
Nanoscale ; 8(5): 2850-6, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26763739

RESUMO

Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic 'single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (Q(II)) template. Further investigation into the mechanism for the orientation revealed the surprising result that the Q(II) template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain Q(II) samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 ± 0.3 µm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of Q(II) phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.

12.
Bone ; 84: 15-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26657825

RESUMO

A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh(-120/+)) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh(-120/+) mice. We also find a much larger fibril strain/tissue strain ratio in Crh(-120/+) mice (~1.5) compared to the wild-type mice (~0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis.


Assuntos
Matriz Óssea/patologia , Matriz Óssea/fisiopatologia , Fraturas Ósseas/fisiopatologia , Osteoporose/induzido quimicamente , Osteoporose/fisiopatologia , Esteroides/efeitos adversos , Animais , Matriz Óssea/diagnóstico por imagem , Feminino , Fêmur/patologia , Fêmur/fisiopatologia , Fêmur/ultraestrutura , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/patologia , Camundongos Endogâmicos C57BL , Osteoporose/diagnóstico por imagem , Síncrotrons , Resistência à Tração , Microtomografia por Raio-X
13.
Chem Commun (Camb) ; 51(57): 11386-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26084976

RESUMO

Lipid cubic phase samples dry out and undergo phase transitions when exposed to air. We demonstrate experimentally and theoretically that adding glycerol controllably lowers the humidity at which cubic phases form. These results broaden the potential applications of cubic phases and open up the potential of a new humidity-responsive nanomaterial.

14.
Bone ; 52(2): 689-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23128355

RESUMO

In metabolic bone diseases, the alterations in fibrillar level bone-material quality affecting macroscopic mechanical competence are not well-understood quantitatively. Here, we quantify the fibrillar level deformation in cantilever bending in a mouse model for hereditary rickets (Hpr). Microfocus in-situ synchrotron small-angle X-ray scattering (SAXS) combined with cantilever bending was used to resolve nanoscale fibril strain in tensile- and compressive tissue regions separately, with quantitative backscattered scanning electron microscopy used to measure microscale mineralization. Tissue-level flexural moduli for Hpr mice were significantly (p<0.01) smaller compared to wild-type (~5 to 10-fold reduction). At the fibrillar level, the fibril moduli within the tensile and compressive zones were significantly (p<0.05) lower by ~3- to 5-fold in Hpr mice compared to wild-type mice. Hpr mice have a lower mineral content (24.2±2.1Cawt.% versus 27.4±3.3Ca wt.%) and its distribution was more heterogeneous compared to wild-type animals. However, the average effective fibril modulus did not differ significantly (p>0.05) over ages (4, 7 and 10weeks) between tensile and compressive zones. Our results indicate that incompletely mineralized fibrils in Hpr mice have greater deformability and lower moduli in both compression and tension, and those compressive and tensile zones have similar moduli at the fibrillar level.


Assuntos
Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Calcificação Fisiológica/fisiologia , Força Compressiva/fisiologia , Minerais/metabolismo , Raquitismo/fisiopatologia , Resistência à Tração/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Modelos Animais de Doenças , Módulo de Elasticidade , Úmero/diagnóstico por imagem , Úmero/patologia , Úmero/fisiopatologia , Camundongos , Modelos Biológicos , Radiografia , Raquitismo/patologia
15.
Bone ; 51(3): 553-62, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22609228

RESUMO

Metabolic bone disorders such as rickets are associated with altered in vivo muscular force distributions on the skeletal system. During development, these altered forces can potentially affect the spatial and temporal dynamics of mineralised tissue formation, but the exact mechanisms are not known. Here we have used a murine model of hypophosphatemic rickets (Hpr) to study the development of the mineralised nanostructure in the intramembranously ossifying scapulae (shoulder bone). Using position-resolved scanning small angle X-ray scattering (SAXS), we quantified the degree and direction of mineral nanocrystallite alignment over the width of the scapulae, from the load bearing lateral border (LB) regions to the intermediate infraspinous fossa (IF) tissue. These measurements revealed a significant (p<0.05) increase in mineral nanocrystallite alignment in the LB when compared to the IF region, with increased tissue maturation in wild-type mice; this was absent in mice with rickets. The crystallites were more closely aligned to the macroscopic bone boundary in the LB when compared to the IF region in both wild type and Hpr mice, but the degree of alignment was reduced in Hpr mice. These findings are consistent with a correlation between the nanocrystallites within fibrils and in vivo muscular forces. Thus our results indicate a relevant mechanism for the observed increased macroscopic deformability in rickets, via a significant alteration in the mineral particle alignment, which is mediated by an altered spatial distribution of muscle forces.


Assuntos
Envelhecimento/patologia , Raquitismo Hipofosfatêmico Familiar/patologia , Minerais/metabolismo , Nanopartículas/química , Escápula/crescimento & desenvolvimento , Escápula/patologia , Animais , Cristalização , Camundongos , Escápula/anormalidades , Espalhamento a Baixo Ângulo , Síncrotrons , Difração de Raios X
16.
J Synchrotron Radiat ; 11(Pt 2): 163-70, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14960781

RESUMO

A new beamline (MPW6.2) has been designed and built for the study of materials during processing where three synchrotron techniques, SAXS, WAXS and XAS, are available simultaneously. It has been demonstrated that Rietveld refinable data can be collected from silicon SRM 640b over a 60 degrees range in a time scale of 1 s. The data have been refined to a chi(2) of 2.4, the peaks fitting best to a Pearson VII function or with fundamental parameters. The peak halfwidths have been found to be approximately constant at 0.06 degrees over a 120 degrees angular range indicating that the instrumental resolution function has matched its design specification. A quantitative comparison of data sets collected on the same isotactic polypropylene system on MPW6.2 and DUBBLE at the ESRF shows a 17% improvement in angular resolution and a 1.8 improvement in peak-to-background ratio with the RAPID2 system; the ESRF data vary more smoothly across detector channels. The time-dependent wide-angle XRD was tested by comparing a hydration reaction of gypsum-bassanite-anhydrite with energy-dispersive data collected on the same system on the same time scale. Three sample data sets from the reaction were selected for analysis and gave an average chi(2) of 3.8. The Rietveld-refined lattice parameters are a good match with published values and the corresponding errors show a mean value of 3.3 x 10(-4). The data have also been analysed by the Pawley decomposition phase-modelling technique demonstrating the ability of the station to quickly and accurately identify new phases. The combined SAXS/WAXS capability of the station was tested with the crystallization and spinodal decomposition of a very dilute polymer system. Our measurements show that the crystallization of a high-density co-polymer (E76B38) as low as 0.5% by weight can be observed in solution in hexane. The WAXS and SAXS data sets were collected on the same time scale. The SAXS detector was calibrated using a collagen sample that gave 30 orders of diffraction in 1 s of data collection. The combined XRD and XAS measurement capability of the station was tested by observing the collapse and re-crystallization of zinc-exchanged zeolite A (zeolite Zn/Na-A). Previous studies of this material on station 9.3 at the SRS were compared with those from the new station. A time improvement of 38 was observed with better quality counting statistics. The improved angular resolution from the WAXS detector enabled new peaks to be identified.


Assuntos
Análise de Falha de Equipamento , Teste de Materiais/instrumentação , Teste de Materiais/métodos , Polipropilenos/química , Síncrotrons/instrumentação , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Desenho de Equipamento , Minerais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA