Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Front Mol Neurosci ; 14: 713031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366786

RESUMO

Frontotemporal dementia (FTD) is a neurodegenerative disease, leading to behavioral changes and language difficulties. Heterozygous loss-of-function mutations in progranulin (GRN) induce haploinsufficiency of the protein and are associated with up to one-third of all genetic FTD cases worldwide. While the loss of GRN is primarily associated with neurodegeneration, the biological functions of the secreted growth factor-like protein are more diverse, ranging from wound healing, inflammation, vasculogenesis, and metabolic regulation to tumor cell growth and metastasis. To date, no disease-modifying treatments exist for FTD, but different therapeutic approaches to boost GRN levels in the central nervous system are currently being developed (including AAV-mediated GRN gene delivery as well as anti-SORT1 antibody therapy). In this review, we provide an overview of the multifaceted regulation of GRN levels and the corresponding therapeutic avenues. We discuss the opportunities, advantages, and potential drawbacks of the diverse approaches. Additionally, we highlight the therapeutic potential of elevating GRN levels beyond patients with loss-of-function mutations in GRN.

3.
Brain Commun ; 2(2): fcaa160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33977260

RESUMO

We studied the feasibility, safety, tolerability and pharmacokinetics of intracerebroventricular delivery of recombinant human vascular endothelial growth factor in patients with amyotrophic lateral sclerosis. In this phase I study in patients with amyotrophic lateral sclerosis, the study drug was delivered using an implantable programmable pump connected to a catheter inserted in the frontal horn of the lateral cerebral ventricle. A first cohort received open label vascular endothelial growth factor (0.2, 0.8 and 2 µg/day), a second cohort received placebo, 0.8 or 2 µg/day of study dug. After the 3-month study period, all patients could participate in an open label extension study. In total, 18 patients with amyotrophic lateral sclerosis, seen at the University Hospitals in Leuven were included. The surgical procedure was well tolerated in most patients. One patient had transient postoperative seizures, due to an ischemic lesion along the catheter tract. The first 3-month study period was completed by 15/18 patients. Administration of 2 µg/day vascular endothelial growth factor resulted in sustained detectable levels in cerebrospinal fluid. A pulmonary embolus occurred in 3 patients, in 1 patient in the first 3-month study, and in 2 patients during the open label extension study. The study drug was well tolerated in the other patients, for up to 6 years in the open label extension study. Our study shows that intracerebroventricular administration of 2 µg/day of vascular endothelial growth factor to patients with amyotrophic lateral sclerosis is feasible, results in detectable cerebrospinal fluid levels and is well tolerated in most patients. The most common serious adverse event was a pulmonary embolus.

5.
Alzheimers Dement ; 14(10): 1261-1280, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036493

RESUMO

INTRODUCTION: Tauopathies are neurodegenerative diseases characterized by TAU protein-related pathology, including frontotemporal dementia and Alzheimer's disease among others. Mutant TAU animal models are available, but none of them faithfully recapitulates human pathology and are not suitable for drug screening. METHODS: To create a new in vitro tauopathy model, we generated a footprint-free triple MAPT-mutant human induced pluripotent stem cell line (N279K, P301L, and E10+16 mutations) using clustered regularly interspaced short palindromic repeats-FokI and piggyBac transposase technology. RESULTS: Mutant neurons expressed pathogenic 4R and phosphorylated TAU, endogenously triggered TAU aggregation, and had increased electrophysiological activity. TAU-mutant cells presented deficiencies in neurite outgrowth, aberrant sequence of differentiation to cortical neurons, and a significant activation of stress response pathways. RNA sequencing confirmed stress activation, demonstrated a shift toward GABAergic identity, and an upregulation of neurodegenerative pathways. DISCUSSION: In summary, we generated a novel in vitro human induced pluripotent stem cell TAU-mutant model displaying neurodegenerative disease phenotypes that could be used for disease modeling and drug screening.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Potenciais da Membrana/fisiologia , Mutação , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurogênese/fisiologia , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Tauopatias/genética , Tauopatias/patologia , Transcriptoma , Proteínas tau/genética
6.
F1000Res ; 7: 220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29552337

RESUMO

Pluripotent stem cells have the property of long-term self-renewal and the potential to give rise to descendants of the three germ layers and hence all mature cells in the human body. Therefore, they hold the promise of offering insight not only into human development but also for human disease modeling and regenerative medicine. However, the generation of mature differentiated cells that closely resemble their in vivo counterparts remains challenging. Recent advances in single-cell transcriptomics and computational modeling of gene regulatory networks are revealing a better understanding of lineage commitment and are driving modern genome editing approaches. Additional modification of the chemical microenvironment, as well as the use of bioengineering tools to recreate the cellular, extracellular matrix, and physical characteristics of the niche wherein progenitors and mature cells reside, is now being used to further improve the maturation and functionality of stem cell progeny.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA