Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 12(1): 13391, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948555

RESUMO

Islands are global hotspots for biodiversity and extinction, representing ~ 5% of Earth's land area alongside 40% of globally threatened vertebrates and 61% of global extinctions since the 1500s. Invasive species are the primary driver of native biodiversity loss on islands, though eradication of invasive species from islands has been effective at halting or reversing these trends. A global compendium of this conservation tool is essential for scaling best-practices and enabling innovations to maximize biodiversity outcomes. Here, we synthesize over 100 years of invasive vertebrate eradications from islands, comprising 1550 eradication attempts on 998 islands, with an 88% success rate. We show a significant growth in eradication activity since the 1980s, primarily driven by rodent eradications. The annual number of eradications on islands peaked in the mid-2000s, but the annual area treated continues to rise dramatically. This trend reflects increases in removal efficacy and project complexity, generating increased conservation gains. Our synthesis demonstrates the collective contribution of national interventions towards global biodiversity outcomes. Further investment in invasive vertebrate eradications from islands will expand biodiversity conservation while strengthening biodiversity resilience to climate change and creating co-benefits for human societies.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Mudança Climática , Humanos , Espécies Introduzidas , Vertebrados
2.
Mar Environ Res ; 174: 105532, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35032818

RESUMO

The Eastern Pacific hawksbill sea turtle population is one of the most endangered of all sea turtle species. Here, we examine the foraging ecology of 47 hawksbill turtles (40.5-90.3 cm CCL, mean = 54.1 ± 10.1 cm) around Isla San José, Gulf of California, Mexico by integrating information from passive acoustic telemetry, behavior recordings, fecal analysis, and habitat surveys. Tagged hawkbill turtles exhibited high site fidelity over months and years (tracking duration 1-1490 days, mean = 255 ± 373 days) to the location and benthic habitat where individuals were initially caught. Diet was dominated by benthic invertebrates and algae including sponges, algae, tunicates, and mangrove roots. The mean percent cover of these benthic food items was significantly greater in the mangrove estuary than in adjacent rocky and sandy reef habitats. The Isla San José foraging ground is a high-use area for hawksbills and should be granted national protection status.


Assuntos
Tartarugas , Animais , California , Ecologia , Ecossistema , México
3.
MethodsX ; 9: 101599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34917491

RESUMO

The seabird meta-population viability model (mPVA) uses a generalized approach to project abundance and quasi-extinction risk for 102 seabird species under various conservation scenarios. The mPVA is a stage-structured projection matrix that tracks abundance of multiple populations linked by dispersal, accounting for breeding island characteristics and spatial distribution. Data are derived from published studies, grey literature, and expert review (with over 500 contributions). Invasive species impacts were generalized to stage-specific vital rates by fitting a Bayesian state-space model to trend data from Islands where invasive removals had occurred, while accounting for characteristics of seabird biology, breeding islands and invasive species. Survival rates were estimated using a competing hazards formulation to account for impacts of multiple threats, while also allowing for environmental and demographic stochasticity, density dependence and parameter uncertainty.•The mPVA provides resource managers with a tool to quantitatively assess potential benefits of alternative management actions, for multiple species•The mPVA compares projected abundance and quasi-extinction risk under current conditions (no intervention) and various conservation scenarios, including removal of invasive species from specified breeding islands, translocation or reintroduction of individuals to an island of specified location and size, and at-sea mortality amelioration via reduction in annual at-sea deaths.

4.
Sci Rep ; 11(1): 5395, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686134

RESUMO

Eleven years after invasive Norway rats (Rattus norvegicus) were eradicated from Hawadax Island, in the Aleutian Islands, Alaska, the predicted three-level trophic cascade in the rocky intertidal, with native shorebirds as the apex predator, returned, leading to a community resembling those on rat-free islands with significant decreases in invertebrate species abundances and increases in fleshy algal cover. Rats had indirectly structured the intertidal community via their role as the apex predator in a four-level trophic cascade. Our results are an excellent example of an achievable and relatively short-term community-level recovery following removal of invasive animals. These conservation successes are especially important for islands as their disproportionately high levels of native biodiversity are excessively threatened by invasive mammals.


Assuntos
Biodiversidade , Espécies Introduzidas , Alaska , Animais , Ilhas , Ratos
5.
PLoS One ; 15(3): e0229798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130277

RESUMO

Climate change is exacerbating drought and water stress in several global regions, including some parts of the United States. During times of drought in the U.S., municipal governments, private water suppliers and non-profits commonly deploy advocacy campaigns and incentive programs targeting reductions in residential water use through actions including: repairing leaks, shutting off taps, and installing new water-saving appliances. We asked whether these campaigns have the potential to alleviate water stress during drought at the county scale by estimating the potential impact of full adoption of such actions. In 2010, we show that the maximum potential use reductions from these residential actions may only alleviate water stress in 6% (174) of U.S. counties. The potential impact of domestic programs is limited by the relative dominance of agriculture water withdrawal, the primary water user in 50% of U.S. counties. While residential actions do achieve some water demand savings, they are not sufficient to alter water stress in the majority of the continental U.S. We recommend redirecting advocacy efforts and incentives to individual behaviors that can influence agricultural water use.


Assuntos
Agricultura/métodos , Mudança Climática , Conservação dos Recursos Hídricos , Secas , Abastecimento de Água , Estados Unidos
6.
Zoonoses Public Health ; 67(1): 70-78, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31677251

RESUMO

BACKGROUND: Toxoplasma gondii is a zoonotic parasite that can have severe implications for human health. Acutely infected cats shed environmentally resistant T. gondii oocysts in their faeces that contaminate soil, and soil can serve as a reservoir of infection for humans. Free-roaming domestic cats are thought to play an important role in environmental contamination with T. gondii, but few studies have directly measured the direct contribution of free-roaming cats to T. gondii in soil. METHODS: Our goals were to determine whether T. gondii soil contamination occurs in public areas with free-roaming cat colonies in central California and examine spatial and temporal variation in soil contamination. We initially performed spiking experiments to compare the limit of T. gondii detection in soil using three conventional nested PCR assays and one real-time quantitative PCR. The nested PCR targeting the internal transcribed spacer (ITS-1) of the small subunit ribosomal RNA was the most sensitive assay, with a limit of detection between 20 and 200 oocysts per gram of soil. We applied the ITS1 PCR assay on soil from sites in city and state parks, public playgrounds and community gardens in central California, USA. Samples were collected during spring, summer and fall and in sites located along the coast and inland. RESULTS: We detected and sequence-confirmed T. gondii in 5.6% of all of our soil sub-samples, but with large seasonal and spatial variation in soil contamination: we only detected T. gondii during fall and only in coastal sites (44.3% soil prevalence), despite similar sampling intensity across space and time. CONCLUSIONS: Our results suggest that free-roaming cat colonies are an important source of T. gondii in spaces where people recreate and grow food and that soil contamination is highly seasonal and spatially variable. Management of free-roaming cats could prevent T. gondii infections by reducing environmental contamination with this zoonotic pathogen.


Assuntos
Doenças do Gato/parasitologia , Estações do Ano , Solo/parasitologia , Toxoplasma/isolamento & purificação , Toxoplasmose Animal/parasitologia , Animais , California , Doenças do Gato/epidemiologia , Gatos , Fezes/parasitologia , Humanos , Oocistos , Parques Recreativos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Instalações Esportivas e Recreacionais , Toxoplasmose Animal/epidemiologia , Zoonoses/epidemiologia
7.
PLoS One ; 14(3): e0212128, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917126

RESUMO

Invasive alien species are a major threat to native insular species. Eradicating invasive mammals from islands is a feasible and proven approach to prevent biodiversity loss. We developed a conceptual framework to identify globally important islands for invasive mammal eradications to prevent imminent extinctions of highly threatened species using biogeographic and technical factors, plus a novel approach to consider socio-political feasibility. We applied this framework using a comprehensive dataset describing the distribution of 1,184 highly threatened native vertebrate species (i.e. those listed as Critically Endangered or Endangered on the IUCN Red List) and 184 non-native mammals on 1,279 islands worldwide. Based on extinction risk, irreplaceability, severity of impact from invasive species, and technical feasibility of eradication, we identified and ranked 292 of the most important islands where eradicating invasive mammals would benefit highly threatened vertebrates. When socio-political feasibility was considered, we identified 169 of these islands where eradication planning or operation could be initiated by 2020 or 2030 and would improve the survival prospects of 9.4% of the Earth's most highly threatened terrestrial insular vertebrates (111 of 1,184 species). Of these, 107 islands were in 34 countries and territories and could have eradication projects initiated by 2020. Concentrating efforts to eradicate invasive mammals on these 107 islands would benefit 151 populations of 80 highly threatened vertebrates and make a major contribution towards achieving global conservation targets adopted by the world's nations.


Assuntos
Conservação dos Recursos Naturais/métodos , Espécies Introduzidas/tendências , Animais , Biodiversidade , Espécies em Perigo de Extinção , Extinção Biológica , Ilhas , Mamíferos
8.
PLoS Negl Trop Dis ; 13(2): e0007040, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30763304

RESUMO

Cats (Felis catus) are reservoirs of several pathogens that affect humans, including Toxoplasma gondii. Infection of pregnant women with T. gondii can cause ocular and neurological lesions in newborns, and congenital toxoplasmosis has been associated with schizophrenia, epilepsy, movement disorders, and Alzheimer's disease. We compared seroprevalence of T. gondii and risk factors in people on seven islands in Mexico with and without introduced cats to determine the effect of cat eradication and cat density on exposure to T. gondii. Seroprevalence was zero on an island that never had cats and 1.8% on an island where cats were eradicated in 2000. Seroprevalence was significantly higher (12-26%) on the five islands with cats, yet it did not increase across a five-fold range of cat density. Having cats near households, being male and spending time on the mainland were significant risk factors for T. gondii seroprevalence among individuals, whereas eating shellfish was protective. Our results suggest that cats are an important source of T. gondii on islands, and eradicating, but not controlling, introduced cats from islands could benefit human health.


Assuntos
Doenças do Gato/parasitologia , Ilhas , Controle da População , Toxoplasmose Animal/parasitologia , Toxoplasmose Congênita/prevenção & controle , Animais , Gatos , Feminino , Humanos , Gravidez , Saúde Pública
9.
PLoS One ; 13(7): e0200743, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016347

RESUMO

Rat eradication has become a common conservation intervention in island ecosystems and its effectiveness in protecting native vertebrates is increasingly well documented. Yet, the impacts of rat eradication on plant communities remain poorly understood. Here we compare native and non-native tree and palm seedling abundance before and after eradication of invasive rats (Rattus rattus) from Palmyra Atoll, Line Islands, Central Pacific Ocean. Overall, seedling recruitment increased for five of the six native trees species examined. While pre-eradication monitoring found no seedlings of Pisonia grandis, a dominant tree species that is important throughout the Pacific region, post-eradication monitoring documented a notable recruitment event immediately following eradication, with up to 688 individual P. grandis seedlings per 100m2 recorded one month post-eradication. Two other locally rare native trees with no observed recruitment in pre-eradication surveys had recruitment post-rat eradication. However, we also found, by five years post-eradication, a 13-fold increase in recruitment of the naturalized and range-expanding coconut palm Cocos nucifera. Our results emphasize the strong effects that a rat eradication can have on tree recruitment with expected long-term effects on canopy composition. Rat eradication released non-native C. nucifera, likely with long-term implications for community composition, potentially necessitating future management interventions. Eradication, nevertheless, greatly benefitted recruitment of native tree species. If this pattern persists over time, we expect long-term benefits for flora and fauna dependent on these native species.


Assuntos
Cocos/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Espécies Introduzidas , Árvores/fisiologia , Animais , Biodiversidade , Ecologia , Havaí , Ilhas , Oceano Pacífico , Ratos , Plântula , Clima Tropical
10.
Ecol Evol ; 7(21): 9085-9097, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29152200

RESUMO

Resource partitioning is an important process driving habitat use and foraging strategies in sympatric species that potentially compete. Differences in foraging behavior are hypothesized to contribute to species coexistence by facilitating resource partitioning, but little is known on the multiple mechanisms for partitioning that may occur simultaneously. Studies are further limited in the marine environment, where the spatial and temporal distribution of resources is highly dynamic and subsequently difficult to quantify. We investigated potential pathways by which foraging behavior may facilitate resource partitioning in two of the largest co-occurring and closely related species on Earth, blue (Balaenoptera musculus) and humpback (Megaptera novaeangliae) whales. We integrated multiple long-term datasets (line-transect surveys, whale-watching records, net sampling, stable isotope analysis, and remote-sensing of oceanographic parameters) to compare the diet, phenology, and distribution of the two species during their foraging periods in the highly productive waters of Monterey Bay, California, USA within the California Current Ecosystem. Our long-term study reveals that blue and humpback whales likely facilitate sympatry by partitioning their foraging along three axes: trophic, temporal, and spatial. Blue whales were specialists foraging on krill, predictably targeting a seasonal peak in krill abundance, were present in the bay for an average of 4.7 months, and were spatially restricted at the continental shelf break. In contrast, humpback whales were generalists apparently feeding on a mixed diet of krill and fishes depending on relative abundances, were present in the bay for a more extended period (average of 6.6 months), and had a broader spatial distribution at the shelf break and inshore. Ultimately, competition for common resources can lead to behavioral, morphological, and physiological character displacement between sympatric species. Understanding the mechanisms for species coexistence is both fundamental to maintaining biodiverse ecosystems, and provides insight into the evolutionary drivers of morphological differences in closely related species.

11.
Sci Adv ; 3(10): e1603080, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29075662

RESUMO

Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth's terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in <1% of islands worldwide. Information about invasive vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth's highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss.


Assuntos
Espécies em Perigo de Extinção , Espécies Introduzidas , Vertebrados , Animais , Biodiversidade , Cruzamento , Conservação dos Recursos Naturais , Ecossistema , Extinção Biológica , Geografia , Humanos , Ilhas , Vertebrados/classificação
12.
Am J Trop Med Hyg ; 96(3): 749-757, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28138052

RESUMO

Many neglected tropical zoonotic pathogens are maintained by introduced mammals, and on islands the most common introduced species are rodents, cats, and dogs. Management of introduced mammals, including control or eradication of feral populations, which is frequently done for ecological restoration, could also reduce or eliminate the pathogens these animals carry. Understanding the burden of these zoonotic diseases is crucial for quantifying the potential public health benefits of introduced mammal management. However, epidemiological data are only available from a small subset of islands where these introduced mammals co-occur with people. We examined socioeconomic and climatic variables as predictors for disease burdens of angiostrongyliasis, leptospirosis, toxoplasmosis, toxocariasis, and rabies from 57 islands or island countries. We found strong correlates of disease burden for leptospirosis, Toxoplasma gondii infection, angiostrongyliasis, and toxocariasis with more than 50% of the variance explained, and an average of 57% (range = 32-95%) predictive accuracy on out-of-sample data. We used these relationships to provide estimates of leptospirosis incidence and T. gondii seroprevalence infection on islands where nonnative rodents and cats are present. These predicted estimates of disease burden could be used in an initial assessment of whether the costs of managing introduced mammal reservoirs might be less than the costs of perpetual treatment of these diseases on islands.


Assuntos
Leptospirose/epidemiologia , Raiva/epidemiologia , Infecções por Strongylida/epidemiologia , Toxocaríase/epidemiologia , Toxoplasmose Animal/epidemiologia , Zoonoses/epidemiologia , Animais , Animais Selvagens/parasitologia , Animais Selvagens/virologia , Humanos , Incidência , Ilhas , Leptospirose/veterinária , Mamíferos/parasitologia , Mamíferos/virologia , Saúde Pública , Raiva/veterinária , Estudos Soroepidemiológicos , Fatores Socioeconômicos , Infecções por Strongylida/veterinária , Zoonoses/parasitologia , Zoonoses/virologia
13.
Nat Commun ; 7: 12488, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535095

RESUMO

Invasive mammals on islands pose severe, ongoing threats to global biodiversity. However, the severity of threats from different mammals, and the role of interacting biotic and abiotic factors in driving extinctions, remain poorly understood at a global scale. Here we model global extirpation patterns for island populations of threatened and extinct vertebrates. Extirpations are driven by interacting factors including invasive rats, cats, pigs, mustelids and mongooses, native species taxonomic class and volancy, island size, precipitation and human presence. We show that controlling or eradicating the relevant invasive mammals could prevent 41-75% of predicted future extirpations. The magnitude of benefits varies across species and environments; for example, managing invasive mammals on small, dry islands could halve the extirpation risk for highly threatened birds and mammals, while doing so on large, wet islands may have little benefit. Our results provide quantitative estimates of conservation benefits and, when combined with costs in a return-on-investment framework, can guide efficient conservation strategies.


Assuntos
Espécies em Perigo de Extinção , Espécies Introduzidas , Mamíferos/fisiologia , Animais , Gatos , Conservação dos Recursos Naturais , Extinção Biológica , Humanos , Ilhas , Modelos Biológicos , Razão de Chances , Probabilidade , Chuva , Ratos , Reprodutibilidade dos Testes , Fatores de Risco , Especificidade da Espécie
14.
Proc Natl Acad Sci U S A ; 113(15): 4033-8, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27001852

RESUMO

More than US$21 billion is spent annually on biodiversity conservation. Despite their importance for preventing or slowing extinctions and preserving biodiversity, conservation interventions are rarely assessed systematically for their global impact. Islands house a disproportionately higher amount of biodiversity compared with mainlands, much of which is highly threatened with extinction. Indeed, island species make up nearly two-thirds of recent extinctions. Islands therefore are critical targets of conservation. We used an extensive literature and database review paired with expert interviews to estimate the global benefits of an increasingly used conservation action to stem biodiversity loss: eradication of invasive mammals on islands. We found 236 native terrestrial insular faunal species (596 populations) that benefitted through positive demographic and/or distributional responses from 251 eradications of invasive mammals on 181 islands. Seven native species (eight populations) were negatively impacted by invasive mammal eradication. Four threatened species had their International Union for the Conservation of Nature (IUCN) Red List extinction-risk categories reduced as a direct result of invasive mammal eradication, and no species moved to a higher extinction-risk category. We predict that 107 highly threatened birds, mammals, and reptiles on the IUCN Red List-6% of all these highly threatened species-likely have benefitted from invasive mammal eradications on islands. Because monitoring of eradication outcomes is sporadic and limited, the impacts of global eradications are likely greater than we report here. Our results highlight the importance of invasive mammal eradication on islands for protecting the world's most imperiled fauna.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Mamíferos , Animais , Biodiversidade , Ilhas
16.
Conserv Biol ; 29(1): 133-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25065901

RESUMO

Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well-known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well-known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well-known and little-known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km(2) and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km(2) and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands.


Assuntos
Biodiversidade , Aves/fisiologia , Conservação dos Recursos Naturais , Ilhas , Mamíferos/fisiologia , Animais , Embriófitas/fisiologia , Geografia , Invertebrados/fisiologia , Modelos Lineares , Modelos Biológicos , Análise Espacial , Vertebrados/fisiologia
17.
Conserv Biol ; 29(1): 143-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25163543

RESUMO

Invasive alien species are one of the primary threats to native biodiversity on islands worldwide. Consequently, eradicating invasive species from islands has become a mainstream conservation practice. Deciding which islands have the highest priority for eradication is of strategic importance to allocate limited resources to achieve maximum conservation benefit. Previous island prioritizations focused either on a narrow set of native species or on a small geographic area. We devised a prioritization approach that incorporates all threatened native terrestrial vertebrates and all invasive terrestrial vertebrates occurring on 11 U.K. overseas territories, which comprise over 2000 islands ranging from the sub-Antarctic to the tropics. Our approach includes eradication feasibility and distinguishes between the potential and realistic conservation value of an eradication, which reflects the benefit that would accrue following eradication of either all invasive species or only those species for which eradication techniques currently exist. We identified the top 25 priority islands for invasive species eradication that together would benefit extant populations of 155 native species including 45 globally threatened species. The 5 most valuable islands included the 2 World Heritage islands Gough (South Atlantic) and Henderson (South Pacific) that feature unique seabird colonies, and Anegada, Little Cayman, and Guana Island in the Caribbean that feature a unique reptile fauna. This prioritization can be rapidly repeated if new information or techniques become available, and the approach could be replicated elsewhere in the world.


Assuntos
Conservação dos Recursos Naturais/métodos , Espécies Introduzidas , Ilhas , Vertebrados , Animais , Ilhas Atlânticas , Região do Caribe , Conservação dos Recursos Naturais/legislação & jurisprudência , Ilhas do Pacífico , Reino Unido
18.
Isotopes Environ Health Stud ; 50(3): 307-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24787278

RESUMO

We tested the effects of sex, tissue, and diet on stable isotope discrimination factors (Δ(13)C and Δ(15)N) for six tissues from rats fed four diets with varied C and N sources, but comparable protein quality and quantity. The Δ(13)C and Δ(15)N values ranged from 1.7-4.1‰ and 0.4-4.3‰, respectively. Females had higher Δ(15)N values than males because males grew larger, whereas Δ(13)C values did not differ between sexes. Differences in Δ(13)C values among tissue types increased with increasing variability in dietary carbon sources. The Δ(15)N values increased with increasing dietary δ(15)N values for all tissues except liver and serum, which have fast stable isotope turnover times, and differences in Δ(15)N values among tissue types decreased with increasing dietary animal protein. Our results demonstrate that variability in dietary sources can affect Δ(13)C values, protein source affects Δ(15)N values even when protein quality and quantity are controlled, and the isotope turnover rate of a tissue can influence the degree to which diet affects Δ(15)N values.


Assuntos
Dieta , Ratos/metabolismo , Animais , Isótopos de Carbono/metabolismo , Feminino , Masculino , Espectrometria de Massas , Modelos Teóricos , Isótopos de Nitrogênio/metabolismo , Ratos Sprague-Dawley , Caracteres Sexuais , Distribuição Tecidual
19.
Conserv Biol ; 28(4): 1100-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24628442

RESUMO

Although wildlife conservation actions have increased globally in number and complexity, the lack of scalable, cost-effective monitoring methods limits adaptive management and the evaluation of conservation efficacy. Automated sensors and computer-aided analyses provide a scalable and increasingly cost-effective tool for conservation monitoring. A key assumption of automated acoustic monitoring of birds is that measures of acoustic activity at colony sites are correlated with the relative abundance of nesting birds. We tested this assumption for nesting Forster's terns (Sterna forsteri) in San Francisco Bay for 2 breeding seasons. Sensors recorded ambient sound at 7 colonies that had 15-111 nests in 2009 and 2010. Colonies were spaced at least 250 m apart and ranged from 36 to 2,571 m(2) . We used spectrogram cross-correlation to automate the detection of tern calls from recordings. We calculated mean seasonal call rate and compared it with mean active nest count at each colony. Acoustic activity explained 71% of the variation in nest abundance between breeding sites and 88% of the change in colony size between years. These results validate a primary assumption of acoustic indices; that is, for terns, acoustic activity is correlated to relative abundance, a fundamental step toward designing rigorous and scalable acoustic monitoring programs to measure the effectiveness of conservation actions for colonial birds and other acoustically active wildlife.


Assuntos
Charadriiformes/fisiologia , Conservação dos Recursos Naturais/métodos , Vocalização Animal , Animais , Densidade Demográfica , São Francisco
20.
Conserv Biol ; 28(5): 1282-90, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24661307

RESUMO

Seabirds are the most threatened group of marine animals; 29% of species are at some risk of extinction. Significant threats to seabirds occur on islands where they breed, but in many cases, effective island conservation can mitigate these threats. To guide island-based seabird conservation actions, we identified all islands with extant or extirpated populations of the 98 globally threatened seabird species, as recognized on the International Union for Conservation of Nature Red List, and quantified the presence of threatening invasive species, protected areas, and human populations. We matched these results with island attributes to highlight feasible island conservation opportunities. We identified 1362 threatened breeding seabird populations on 968 islands. On 803 (83%) of these islands, we identified threatening invasive species (20%), incomplete protected area coverage (23%), or both (40%). Most islands with threatened seabirds are amenable to island-wide conservation action because they are small (57% were <1 km(2) ), uninhabited (74%), and occur in high- or middle-income countries (96%). Collectively these attributes make islands with threatened seabirds a rare opportunity for effective conservation at scale.


Assuntos
Distribuição Animal , Aves/fisiologia , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Biodiversidade , Espécies Introduzidas , Ilhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA