Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Sci Rep ; 14(1): 4521, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402313

RESUMO

Kainate receptors (KARs) are one of the ionotropic glutamate receptors in the central nervous system (CNS) comprised of five subunits, GluK1-GluK5. There is a growing interest in the association between KARs and psychiatric disorders, and there have been several studies investigating the behavioral phenotypes of KAR deficient mice, however, the difference in the genetic background has been found to affect phenotype in multiple mouse models of human diseases. Here, we examined GluK1-5 single KO mice in a pure C57BL/6N background and identified that GluK3 KO mice specifically express anxiolytic-like behavior with an alteration in dopamine D2 receptor (D2R)-induced anxiety, and reduced D2R expression in the striatum. Biochemical studies in the mouse cortex confirmed that GluK3 subunits do not assemble with GluK4 and GluK5 subunits, that can be activated by lower concentration of agonists. Overall, we found that GluK3-containing KARs function to express anxiety, which may represent promising anti-anxiety medication targets.


Assuntos
Receptor de GluK3 Cainato , Receptores de Ácido Caínico , Camundongos , Animais , Humanos , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Camundongos Endogâmicos C57BL , Receptores Ionotrópicos de Glutamato , Ansiedade/genética
2.
J Clin Med ; 11(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36294410

RESUMO

Tissue-specific stem cells exist in tissues and organs, such as skin and bone marrow. However, their pluripotency is limited compared to embryonic stem cells. Culturing primary cells on plastic tissue culture dishes can result in the loss of multipotency, because of the inability of tissue-specific stem cells to survive in feeder-less dishes. Recent findings suggest that culturing primary cells in medium containing feeder cells, particularly genetically modified feeder cells expressing growth factors, may be beneficial for their survival and proliferation. Therefore, the aim of this study was to elucidate the role of genetically modified human feeder cells expressing growth factors in maintaining the integrity of primary cultured human deciduous dental pulp cells. Feeder cells expressing leukemia inhibitory factor, bone morphogenetic protein 4, and basic fibroblast growth factor were successfully engineered, as evidenced by PCR. Co-culturing with mitomycin-C-treated feeder cells enhanced the proliferation of newly isolated human deciduous dental pulp cells, promoted their differentiation into adipocytes and neurons, and maintained their stemness properties. Our findings suggest that genetically modified human feeder cells may be used to maintain the integrity of primary cultured human deciduous dental pulp cells.

3.
J Biol Chem ; 298(5): 101933, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427648

RESUMO

Hyperammonemia is known to cause various neurological dysfunctions such as seizures and cognitive impairment. Several studies have suggested that hyperammonemia may also be linked to the development of Alzheimer's disease (AD). However, the direct evidence for a role of ammonia in the pathophysiology of AD remains to be discovered. Herein, we report that hyperammonemia increases the amount of mature amyloid precursor protein (mAPP) in astrocytes, the largest and most prevalent type of glial cells in the central nervous system that are capable of metabolizing glutamate and ammonia, and promotes amyloid beta (Aß) production. We demonstrate the accumulation of mAPP in astrocytes was primarily due to enhanced endocytosis of mAPP from the plasma membrane. A large proportion of internalized mAPP was targeted not to the lysosome, but to the endoplasmic reticulum, where processing enzymes ß-secretase BACE1 (beta-site APP cleaving enzyme 1) and γ-secretase presenilin-1 are expressed, and mAPP is cleaved to produce Aß. Finally, we show the ammonia-induced production of Aß in astrocytic endoplasmic reticulum was specific to Aß42, a principal component of senile plaques in AD patients. Our studies uncover a novel mechanism of Aß42 production in astrocytes and also provide the first evidence that ammonia induces the pathogenesis of AD by regulating astrocyte function.


Assuntos
Doença de Alzheimer , Amônia , Peptídeos beta-Amiloides , Astrócitos , Hiperamonemia , Doença de Alzheimer/fisiopatologia , Amônia/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/patologia , Retículo Endoplasmático/metabolismo , Humanos , Hiperamonemia/metabolismo
4.
Neurosci Res ; 173: 62-70, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34174368

RESUMO

Hh signaling has been shown to be activated in intact and injured peripheral nerve. However, the role of Hh signaling in peripheral nerve is not fully understood. In the present study, we observed that Hh signaling responsive cells [Gli1(+) cells] in both the perineurium and endoneurium. In the endoneurium, Gli1(+) cells were classified as blood vessel associated or non-associated. After injury, Gli1(+) cells around blood vessels mainly proliferated to then accumulate into the injury site along with endothelial cells. Hh signaling activity was retained in Gli1(+) cells during nerve regeneration. To understand the role of Hedgehog signaling in Gli1(+) cells during nerve regeneration, we examined mice with Gli1(+) cells-specific inactivation of Hh signaling (Smo cKO). After injury, Smo cKO mice showed significantly reduced numbers of accumulated Gli1(+) cells along with disorganized vascularization at an early stage of nerve regeneration, which subsequently led to an abnormal extension of the axon. Thus, Hh signaling in Gli1(+) cells appears to be involved in nerve regeneration through controlling new blood vessel formation at an early stage.


Assuntos
Células Endoteliais , Proteínas Hedgehog , Animais , Camundongos , Regeneração Nervosa , Nervos Periféricos , Proteína GLI1 em Dedos de Zinco
5.
Behav Brain Res ; 405: 113194, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33631192

RESUMO

Kainate receptors (KARs) are members of the glutamate receptor family that regulate synaptic function in the brain. Although they are known to be associated with psychiatric disorders, how they are involved in these disorders remains unclear. KARs are tetrameric channels assembled from a combination of GluK1-5 subunits. Among these, GluK2 and GluK5 subunits are the major heteromeric subunits in the brain. To determine the functional similarities and differences between GluK2 and GluK5 subunits, we generated GluK2 KO and GluK5 KO mice on a C57BL/6N background, a well-characterized inbred strain, and compared their behavioral phenotypes. We found that GluK2 KO and GluK5 KO mice exhibited the same phenotypes in many tests, such as reduced locomotor activity, impaired motor function, and enhanced depressive-like behavior. No change was observed in motor learning, anxiety-like behavior, or sociability. Additionally, we identified subunit-specific phenotypes, such as reduced motivation toward their environment in GluK2 KO mice and an enhancement in the contextual memory in GluK5 KO mice. These results revealed that GluK2 and GluK5 subunits not only function in a coordinated manner but also have a subunit-specific role in regulating behavior. To summarize, we demonstrated subunit-specific and common behavioral effects of GluK2 and GluK5 subunits for the first time. Moreover, to the best of our knowledge, this is the first evidence of the involvement of the GluK5 subunit in the expression of depressive-like behavior and contextual memory, which strongly indicates its role in psychiatric disorders.


Assuntos
Comportamento Animal/fisiologia , Depressão/fisiopatologia , Modelos Animais de Doenças , Aprendizagem/fisiologia , Receptores de Ácido Caínico/fisiologia , Animais , Depressão/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Ácido Caínico/genética , Receptor de GluK2 Cainato
6.
J Clin Med ; 9(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887316

RESUMO

Pluripotent stem cells are classified as naïve and primed cells, based on their in vitro growth characteristics and potential to differentiate into various types of cells. Human-induced pluripotent stem cells (iPSCs, also known as epiblast stem cells [EpiSCs]) have limited capacity to differentiate and are slightly more differentiated than naïve stem cells (NSCs). Although there are several in vitro protocols that allow iPSCs to differentiate into pancreatic lineage, data concerning generation of ß-cells from these iPSCs are limited. Based on the pluripotentiality of NSCs, it was hypothesized that NSCs can differentiate into pancreatic ß-cells when placed under an appropriate differentiation induction condition. We examined whether NSCs can be efficiently induced to form potentially pancreatic ß cells after being subjected to an in vitro protocol. Several colonies resembling in vitro-produced ß-cell foci, with ß-cell-specific marker expression, were observed when NSC-derived embryoid bodies (EBs) were induced to differentiate into ß-cell lineage. Conversely, EpiSC-derived EBs failed to form such foci in vitro. Intrapancreatic grafting of the in vitro-formed ß-cell foci into nude mice (BALB/c-nu/nu) generated a cell mass containing insulin-producing cells (IPCs), without noticeable tumorigenesis. These NSCs can be used as a promising resource for curing type 1 diabetes.

7.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G412-G419, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755305

RESUMO

A major component of gastric acid is hydrochloric acid (HCl), which can activate transient receptor potential vanilloid 1 (TRPV1). In the present study, we investigated how sustained laryngeal TRPV1 activation affects the frequency of the swallowing reflex. Experiments were carried out on 85 male Sprague-Dawley rats. The effects of short and sustained application of chemicals (3 µl of 0.1 N HCl or capsaicin) on the frequency of swallowing and on time-dependent changes in the occurrence of swallowing evoked by supralaryngeal nerve stimulation were determined. To evaluate vascular permeability of the larynx, Evans blue dye was intravenously injected after 5 or 60 min of sustained TRPV1 activation. SB366791 (a TRPV1 inhibitor) and Cap/QX-314 (a TRPV1-expressed neuronal inhibitor) significantly inhibited HCl/capsaicin-induced swallowing, but air flow-induced swallowing was not affected. Although the number of air flow-induced swallows followed by capsaicin stimulation was not affected within 5 min, it was significantly reduced by 60-min capsaicin or HCl application. The swallowing threshold associated with supralaryngeal nerve stimulation did not significantly change throughout the recording period. Evans blue dye concentrations in the larynx were significantly higher at 60 min in the 10-5 M capsaicin group than in the control group. Our results suggest that sustained TPRV1 activation not only desensitizes TRPV1 but also inactivates mechanoreceptors, which may be attributed to increases in vascular permeability and edema, as part of an inflammatory process.NEW & NOTEWORTHY Although a transient receptor potential vanilloid 1 (TRPV1) inhibitor or TRPV1-expressed neuronal inhibitor significantly inhibited HCl/capsaicin-evoked swallowing, air flow-induced swallowing was not affected. The number of air flow-induced swallows was significantly reduced within 60 min of TRPV1 activation. Evans blue dye concentration in the larynx increased 60 min after capsaicin application. TPRV1 activation not only desensitizes TRPV1 but also inactivates mechanoreceptors caused by increases in vascular permeability and edema.


Assuntos
Anestesia , Deglutição/efeitos dos fármacos , Laringe/metabolismo , Canais de Cátion TRPV/agonistas , Anilidas/farmacologia , Animais , Permeabilidade Capilar , Capsaicina/farmacologia , Cinamatos/farmacologia , Estimulação Elétrica , Nervos Laríngeos/fisiologia , Masculino , Mecanorreceptores/efeitos dos fármacos , Estimulação Física , Radiação , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/antagonistas & inibidores
8.
J Neurosci ; 40(14): 2808-2816, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32111696

RESUMO

Addictive drugs usurp the brain's intrinsic mechanism for reward, leading to compulsive and destructive behaviors. In the ventral tegmental area (VTA), the center of the brain's reward circuit, GABAergic neurons control the excitability of dopamine (DA) projection neurons and are the site of initial psychostimulant-dependent changes in signaling. Previous work established that cocaine/methamphetamine exposure increases protein phosphatase 2A (PP2A) activity, which dephosphorylates the GABABR2 subunit, promotes internalization of the GABAB receptor (GABABR) and leads to smaller GABABR-activated G-protein-gated inwardly rectifying potassium (GIRK) currents in VTA GABA neurons. How the actions of PP2A become selective for a particular signaling pathway is poorly understood. Here, we demonstrate that PP2A can associate directly with a short peptide sequence in the C terminal domain of the GABABR1 subunit, and that GABABRs and PP2A are in close proximity in rodent neurons (mouse/rat; mixed sexes). We show that this PP2A-GABABR interaction can be regulated by intracellular Ca2+ Finally, a peptide that potentially reduces recruitment of PP2A to GABABRs and thereby limits receptor dephosphorylation increases the magnitude of baclofen-induced GIRK currents. Thus, limiting PP2A-dependent dephosphorylation of GABABRs may be a useful strategy to increase receptor signaling for treating diseases.SIGNIFICANCE STATEMENT Dysregulation of GABAB receptors (GABABRs) underlies altered neurotransmission in many neurological disorders. Protein phosphatase 2A (PP2A) is involved in dephosphorylating and subsequent internalization of GABABRs in models of addiction and depression. Here, we provide new evidence that PP2A B55 regulatory subunit interacts directly with a small region of the C-terminal domain of the GABABR1 subunit, and that this interaction is sensitive to intracellular Ca2+ We demonstrate that a short peptide corresponding to the PP2A interaction site on GABABR1 competes for PP2A binding, enhances phosphorylation GABABR2 S783, and affects functional signaling through GIRK channels. Our study highlights how targeting PP2A dependent dephosphorylation of GABABRs may provide a specific strategy to modulate GABABR signaling in disease conditions.


Assuntos
Neurônios/metabolismo , Proteína Fosfatase 2/metabolismo , Receptores de GABA-B/metabolismo , Transdução de Sinais/fisiologia , Animais , Encéfalo/metabolismo , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ratos , Transmissão Sináptica/fisiologia
9.
Sci Rep ; 9(1): 1490, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728386

RESUMO

Human tissue-specific stem cells (hTSCs), found throughout the body, can differentiate into several lineages under appropriate conditions in vitro and in vivo. By transfecting terminally differentiated cells with reprogramming factors, we previously produced induced TSCs from the pancreas and hepatocytes that exhibit additional properties than iPSCs, as exemplified by very low tumour formation after xenogenic transplantation. We hypothesised that hTSCs, being partially reprogrammed in a state just prior to iPSC transition, could be isolated from any terminally differentiated cell type through transient reprogramming factor overexpression. Cytochemical staining of human deciduous tooth-derived dental pulp cells (HDDPCs) and human skin-derived fibroblasts following transfection with Yamanaka's factors demonstrated increased ALP activity, a stem cell marker, three weeks after transfection albeit in a small percentage of clones. Repeated transfections (≤3) led to more efficient iPSC generation, with HDDPCs exhibiting greater multipotentiality at two weeks post-transfection than the parental intact HDDPCs. These results indicated the utility of iPSC technology to isolate TSCs from HDDPCs and fibroblasts. Generally, a step-wise loss of pluripotential phenotypes in ESCs/iPSCs occurs during their differentiation process. Our present findings suggest that the reverse phenomenon can also occur upon repeated introduction of reprogramming factors into differentiated cells such as HDDPCs and fibroblasts.


Assuntos
Técnicas de Cultura de Células/métodos , Polpa Dentária/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Reprogramação Celular/fisiologia , Fibroblastos/citologia , Humanos , Células-Tronco Multipotentes/citologia , Pele/citologia , Dente Decíduo/citologia
10.
Proc Jpn Acad Ser B Phys Biol Sci ; 94(10): 390-411, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30541966

RESUMO

γ-aminobutyric acid type B (GABAB) receptors are broadly expressed in the nervous system and play an important role in neuronal excitability. GABAB receptors are G protein-coupled receptors that mediate slow and prolonged inhibitory action, via activation of Gαi/o-type proteins. GABAB receptors mediate their inhibitory action through activating inwardly rectifying K+ channels, inactivating voltage-gated Ca2+ channels, and inhibiting adenylate cyclase. Functional GABAB receptors are obligate heterodimers formed by the co-assembly of R1 and R2 subunits. It is well established that GABAB receptors interact not only with G proteins and effectors but also with various proteins. This review summarizes the structure, subunit isoforms, and function of GABAB receptors, and discusses the complexity of GABAB receptors, including how receptors are localized in specific subcellular compartments, the mechanism regulating cell surface expression and mobility of the receptors, and the diversity of receptor signaling through receptor crosstalk and interacting proteins.


Assuntos
Receptores de GABA/química , Receptores de GABA/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos , Processamento de Proteína Pós-Traducional , Transporte Proteico
11.
Neuropsychopharmacology ; 43(6): 1224-1234, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29052618

RESUMO

Alcohol is associated with nearly half of all violent crimes committed in the United States; yet, a potential neural basis for this type of pathological aggression remains elusive. Alcohol may act on N-methyl-d-aspartate receptors (NMDARs) within cortical circuits to impede processing and to promote aggression. Here, male mice were characterized as alcohol-heightened (AHAs) or alcohol non-heightened aggressors (ANAs) during resident-intruder confrontations after self-administering 1.0 g/kg alcohol (6% w/v) or water. Alcohol produced a pathological-like pattern of aggression in AHAs; these mice shifted their bites to more vulnerable locations on the body of a submissive animal, including the anterior back and ventrum after consuming alcohol. In addition, through immunoblotting, we found that AHAs overexpressed the NMDAR GluN2D subunit in the prefrontal cortex (PFC) as compared to ANAs while the two phenotypes expressed similar levels of GluN1, GluN2A and GluN2B. After identifying several behavioral and molecular characteristics that distinguish AHAs from ANAs, we tested additional mice for their aggression following preferential antagonism of GluN2D-containing NMDARs. In these experiments, groups of AHAs and ANAs self-administered 1.0 g/kg alcohol (6% w/v) or water before receiving intraperitoneal (i.p.) doses of ketamine or memantine, or infusions of memantine directly into the prelimbic (PLmPFC) or infralimbic medial PFC (ILmPFC). Moderate doses of IP ketamine, IP memantine, or intra-PLmPFC memantine increased aggression in AHAs, but only in the absence of alcohol. Prior alcohol intake blocked the pro-aggressive effects of ketamine or memantine. In contrast, only memantine, administered systemically or intra-PLmPFC, interacted with prior alcohol intake to escalate aggression in ANAs. Intra-ILmPFC memantine had no effect on aggression in either AHAs or ANAs. In sum, this work illustrates a potential role of GluN2D-containing NMDARs in the PLmPFC in alcohol-heightened aggression. GluN2D-containing NMDARs are highly expressed on cortical parvalbumin-containing interneurons, suggesting that, in a subset of individuals, alcohol may functionally alter signal integration within cortical microcircuits to dysregulate threat reactivity and promote aggression. This work suggests that targeting GluN2D-NMDARs may be of use in reducing the impact of alcohol-related violence in the human population.


Assuntos
Agressão/efeitos dos fármacos , Transtornos Relacionados ao Uso de Álcool/metabolismo , Depressores do Sistema Nervoso Central/efeitos adversos , Etanol/efeitos adversos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Agressão/fisiologia , Transtornos Relacionados ao Uso de Álcool/psicologia , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Feminino , Masculino , Camundongos , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Autoadministração , Territorialidade
12.
J Neurosci ; 36(11): 3106-14, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26985023

RESUMO

Repeated exposure to psychostimulants induces locomotor sensitization and leads to persistent changes in the circuitry of the mesocorticolimbic dopamine (DA) system. G-protein-gated inwardly rectifying potassium (GIRK; also known as Kir3) channels mediate a slow IPSC and control the excitability of DA neurons. Repeated 5 d exposure to psychostimulants decreases the size of the GABAB receptor (GABABR)-activated GIRK currents (IBaclofen) in ventral tegmental area (VTA) DA neurons of mice, but the mechanism underlying this plasticity is poorly understood. Here, we show that methamphetamine-dependent attenuation of GABABR-GIRK currents in VTA DA neurons required activation of both D1R-like and D2R-like receptors. The methamphetamine-dependent decrease in GABABR-GIRK currents in VTA DA neurons did not depend on a mechanism of dephosphorylation of the GABAB R2 subunit found previously for other neurons in the reward pathway. Rather, the presence of the GIRK3 subunit appeared critical for the methamphetamine-dependent decrease of GABABR-GIRK current in VTA DA neurons. Together, these results highlight different regulatory mechanisms in the learning-evoked changes that occur in the VTA with repeated exposure to psychostimulants. SIGNIFICANCE STATEMENT: Exposure to addictive drugs such as psychostimulants produces persistent adaptations in inhibitory circuits within the mesolimbic dopamine system, suggesting that addictive behaviors are encoded by changes in the reward neural circuitry. One form of neuroadaptation that occurs with repeated exposure to psychostimulants is a decrease in slow inhibition, mediated by a GABAB receptor and a potassium channel. Here, we examine the subcellular mechanism that links psychostimulant exposure with changes in slow inhibition and reveal that one type of potassium channel subunit is important for mediating the effect of repeated psychostimulant exposure. Dissecting out the components of drug-dependent plasticity and uncovering novel protein targets in the reward circuit may lead to the development of new therapeutics for treating addiction.


Assuntos
Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Metanfetamina/farmacologia , Receptores de GABA-B/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/citologia , Animais , Animais Recém-Nascidos , Baclofeno/farmacologia , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Agonistas dos Receptores de GABA-B/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de GABA-B/genética , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/genética
13.
Proc Natl Acad Sci U S A ; 112(48): 14805-10, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627235

RESUMO

Alterations in the efficacy of neuronal inhibition mediated by GABAA receptors (GABAARs) containing ß3 subunits are continually implicated in autism spectrum disorders (ASDs). In vitro, the plasma membrane stability of GABAARs is potentiated via phosphorylation of serine residues 408 and 409 (S408/9) in the ß3 subunit, an effect that is mimicked by their mutation to alanines. To assess if modifications in ß3 subunit expression contribute to ASDs, we have created a mouse in which S408/9 have been mutated to alanines (S408/9A). S408/9A homozygotes exhibited increased phasic, but decreased tonic, inhibition, events that correlated with alterations in the membrane stability and synaptic accumulation of the receptor subtypes that mediate these distinct forms of inhibition. S408/9A mice exhibited alterations in dendritic spine structure, increased repetitive behavior, and decreased social interaction, hallmarks of ASDs. ASDs are frequently comorbid with epilepsy, and consistent with this comorbidity, S408/9A mice exhibited a marked increase in sensitivity to seizures induced by the convulsant kainic acid. To assess the relevance of our studies using S408/9A mice for the pathophysiology of ASDs, we measured S408/9 phosphorylation in Fmr1 KO mice, a model of fragile X syndrome, the most common monogenetic cause of ASDs. Phosphorylation of S408/9 was selectively and significantly enhanced in Fmr1 KO mice. Collectively, our results suggest that alterations in phosphorylation and/or activity of ß3-containing GABAARs may directly contribute to the pathophysiology of ASDs.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Regulação da Expressão Gênica , Receptores de GABA-A/genética , Alanina/genética , Animais , Comportamento Animal , Biotinilação , Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Fenômenos Eletrofisiológicos , Epilepsia/complicações , Medo , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Fosforilação , Serina/genética , Comportamento Social , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
Neuropharmacology ; 88: 74-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25261019

RESUMO

Gamma-aminobutyric acid B receptors (GABABRs) are heterodimeric G-protein coupled receptors, which mediate slow synaptic inhibition in the brain. Emerging evidence suggests astrocytes also express GABABRs, although their physiological significance remains unknown. To begin addressing this issue, we have used imaging and biochemical analysis to examine the role GABABRs play in regulating astrocytic Ca(2+) signalling. Using live imaging of cultured cortical astrocytes loaded with calcium indicator Fluo-4/AM, we found that astrocytic GABABRs are able to induce astrocytic calcium transients only if they are pre-activated by P2 purinoceptors (P2YRs). The GABABR-mediated calcium transients were attenuated by the removal of extracellular calcium. Furthermore, P2YRs enhance the phosphorylation of astrocytic GABABR R2 subunits on both serine 783 (S783) and serine 892 (S892), two phosphorylation sites that are well known to regulate the activity and the cell surface stability of GABABRs. Collectively these results suggest that P2YR mediated signalling is an important determinant of GABABR activity and phosphorylation in astrocytes.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Receptores de GABA-B/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Baclofeno/farmacologia , Western Blotting , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , AMP Cíclico/metabolismo , Espaço Extracelular/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Camundongos Endogâmicos C57BL , Microscopia Confocal , Toxina Pertussis/farmacologia , Fosforilação , Antagonistas do Receptor Purinérgico P2/farmacologia
15.
J Biol Chem ; 289(42): 28808-15, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25172509

RESUMO

Emerging evidence suggests that functional γ-aminobutyric acid B receptors (GABABRs) are expressed by astrocytes within the mammalian brain. GABABRs are heterodimeric G-protein-coupled receptors that are composed of R1/R2 subunits. To date, they have been characterized in neurons as the principal mediators of sustained inhibitory signaling; however their roles in astrocytic physiology have been ill defined. Here we reveal that the cytoplasmic tail of the GABABR2 subunit binds directly to the astrocytic protein glutamine synthetase (GS) and that this interaction determines the subcellular localization of GS. We further demonstrate that the binding of GS to GABABR2 increases the steady state expression levels of GS in heterologous cells and in mouse primary astrocyte culture. Mechanistically this increased stability of GS in the presence of GABABR2 occurs via reduced proteasomal degradation. Collectively, our results suggest a novel role for GABABRs as regulators of GS stability. Given the critical role that GS plays in the glutamine-glutamate cycle, astrocytic GABABRs may play a critical role in supporting both inhibitory and excitatory neurotransmission.


Assuntos
Astrócitos/enzimologia , Regulação Enzimológica da Expressão Gênica , Glutamato-Amônia Ligase/fisiologia , Receptores de GABA-B/metabolismo , Animais , Astrócitos/citologia , Encéfalo/metabolismo , Células COS , Linhagem Celular , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Feminino , Glutamina/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapeamento de Interação de Proteínas , Frações Subcelulares , Transmissão Sináptica
16.
Proc Natl Acad Sci U S A ; 111(19): 7132-7, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24778259

RESUMO

Neurosteroids are synthesized within the brain and act as endogenous anxiolytic, anticonvulsant, hypnotic, and sedative agents, actions that are principally mediated via their ability to potentiate phasic and tonic inhibitory neurotransmission mediated by γ-aminobutyric acid type A receptors (GABAARs). Although neurosteroids are accepted allosteric modulators of GABAARs, here we reveal they exert sustained effects on GABAergic inhibition by selectively enhancing the trafficking of GABAARs that mediate tonic inhibition. We demonstrate that neurosteroids potentiate the protein kinase C-dependent phosphorylation of S443 within α4 subunits, a component of GABAAR subtypes that mediate tonic inhibition in many brain regions. This process enhances insertion of α4 subunit-containing GABAAR subtypes into the membrane, resulting in a selective and sustained elevation in the efficacy of tonic inhibition. Therefore, the ability of neurosteroids to modulate the phosphorylation and membrane insertion of α4 subunit-containing GABAARs may underlie the profound effects these endogenous signaling molecules have on neuronal excitability and behavior.


Assuntos
Neurônios/metabolismo , Neurotransmissores/metabolismo , Receptores de GABA-A/metabolismo , Filtro Sensorial/fisiologia , Sinapses/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteína Quinase C/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de GABA-A/fisiologia , Filtro Sensorial/efeitos dos fármacos
17.
J Neurosci ; 34(3): 804-16, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431439

RESUMO

Cognitive dysfunction is a common symptom in many neuropsychiatric disorders and directly correlates with poor patient outcomes. The majority of prolonged inhibitory signaling in the brain is mediated via GABAB receptors (GABABRs), but the molecular function of these receptors in cognition is ill defined. To explore the significance of GABABRs in neuronal activity and cognition, we created mice with enhanced postsynaptic GABABR signaling by mutating the serine 783 in receptor R2 subunit (S783A), which decreased GABABR degradation. Enhanced GABABR activity reduced the expression of immediate-early gene-encoded protein Arc/Arg3.1, effectors that are critical for long-lasting memory. Intriguingly, S783A mice exhibited increased numbers of excitatory synapses and surface AMPA receptors, effects that are consistent with decreased Arc/Arg3.1 expression. These deficits in Arc/Arg3.1 and neuronal morphology lead to a deficit in spatial memory consolidation. Collectively our results suggest a novel and unappreciated role for GABABR activity in determining excitatory neuronal architecture and spatial memory via their ability to regulate Arc/Arg3.1.


Assuntos
Proteínas do Citoesqueleto/antagonistas & inibidores , Potenciais Pós-Sinápticos Excitadores/fisiologia , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Neurônios/metabolismo , Receptores de GABA-B/fisiologia , Comportamento Espacial/fisiologia , Sinapses/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Técnicas de Introdução de Genes , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Receptores de GABA-B/genética
18.
J Neurosci ; 33(39): 15567-77, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24068823

RESUMO

Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal activity, neurogenesis, and depressive-like behaviors; however, downstream effectors by which BDNF exerts these varying actions remain to be determined. Here we reveal that BDNF induces long-lasting enhancements in the efficacy of synaptic inhibition by stabilizing γ2 subunit-containing GABA(A) receptors (GABA(A)Rs) at the cell surface, leading to persistent reductions in neuronal excitability. This effect is dependent upon enhanced phosphorylation of tyrosines 365 and 367 (Y365/7) in the GABA(A)R γ2 subunit as revealed using mice in which these residues have been mutated to phenyalanines (Y365/7F). Heterozygotes for this mutation exhibit an antidepressant-like phenotype, as shown using behavioral-despair models of depression. In addition, heterozygous Y365/7F mice show increased levels of hippocampal neurogenesis, which has been strongly connected with antidepressant action. Both the antidepressant phenotype and the increased neurogenesis seen in these mice are insensitive to further modulation by BDNF, which produces robust antidepressant-like activity and neurogenesis in wild-type mice. Collectively, our results suggest a critical role for GABA(A)R γ2 subunit Y365/7 phosphorylation and function in regulating the effects of BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Depressão/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Depressão/genética , Heterozigoto , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Mutação de Sentido Incorreto , Neurogênese/genética , Neurônios/citologia , Neurônios/fisiologia , Fenótipo , Fosforilação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Receptores de GABA-A/genética , Tirosina/genética , Tirosina/metabolismo
19.
J Neurosci ; 33(17): 7264-73, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616535

RESUMO

Intravenous anesthetics exert a component of their actions via potentiating inhibitory neurotransmission mediated by γ-aminobutyric type-A receptors (GABAARs). Phasic and tonic inhibition is mediated by distinct populations of GABAARs, with the majority of phasic inhibition by subtypes composed of α1-3ßγ2 subunits, whereas tonic inhibition is dependent on subtypes assembled from α4-6ßδ subunits. To explore the contribution that these distinct forms of inhibition play in mediating intravenous anesthesia, we have used mice in which tyrosine residues 365/7 within the γ2 subunit are mutated to phenyalanines (Y365/7F). Here we demonstrate that this mutation leads to increased accumulation of the α4 subunit containing GABAARs in the thalamus and dentate gyrus of female Y365/7F but not male Y365/7F mice. Y365/7F mice exhibited a gender-specific enhancement of tonic inhibition in the dentate gyrus that was more sensitive to modulation by the anesthetic etomidate, together with a deficit in long-term potentiation. Consistent with this, female Y365/7F, but not male Y365/7F, mice exhibited a dramatic increase in the duration of etomidate- and propofol-mediated hypnosis. Moreover, the amnestic actions of etomidate were selectively potentiated in female Y365/7F mice. Collectively, these observations suggest that potentiation of tonic inhibition mediated by α4 subunit containing GABAARs contributes to the hypnotic and amnestic actions of the intravenous anesthetics, etomidate and propofol.


Assuntos
Amnésia/induzido quimicamente , Etomidato/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Propofol/administração & dosagem , Amnésia/fisiopatologia , Anestésicos Intravenosos/administração & dosagem , Animais , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia , Técnicas de Cultura de Órgãos , Distribuição Aleatória
20.
Neuron ; 73(5): 978-89, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22405207

RESUMO

Psychostimulants induce neuroadaptations in excitatory and fast inhibitory transmission in the ventral tegmental area (VTA). Mechanisms underlying drug-evoked synaptic plasticity of slow inhibitory transmission mediated by GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK/Kir(3)) channels, however, are poorly understood. Here, we show that 1 day after methamphetamine (METH) or cocaine exposure both synaptically evoked and baclofen-activated GABA(B)R-GIRK currents were significantly depressed in VTA GABA neurons and remained depressed for 7 days. Presynaptic inhibition mediated by GABA(B)Rs on GABA terminals was also weakened. Quantitative immunoelectron microscopy revealed internalization of GABA(B1) and GIRK2, which occurred coincident with dephosphorylation of serine 783 (S783) in GABA(B2), a site implicated in regulating GABA(B)R surface expression. Inhibition of protein phosphatases recovered GABA(B)R-GIRK currents in VTA GABA neurons of METH-injected mice. This psychostimulant-evoked impairment in GABA(B)R signaling removes an intrinsic brake on GABA neuron spiking, which may augment GABA transmission in the mesocorticolimbic system.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Regulação para Baixo/efeitos dos fármacos , Metanfetamina/farmacologia , Neurônios/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Área Tegmentar Ventral/citologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Baclofeno/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Channelrhodopsins , Dopamina/farmacologia , Dopaminérgicos/farmacologia , Interações Medicamentosas , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/ultraestrutura , Agonistas dos Receptores de GABA-B/farmacologia , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica/métodos , Neurônios/metabolismo , Neurônios/ultraestrutura , Compostos Organofosforados/farmacologia , Fosforilação , Receptores de GABA-A/ultraestrutura , Fatores de Transcrição/genética , Área Tegmentar Ventral/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA