Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366177

RESUMO

Growing evidence suggests that interactions among heterotrophic microorganisms influence the efficiency and rate of organic matter turnover. These interactions are dynamic and shaped by the composition and availability of resources in their surrounding environment. Heterotrophic microorganisms inhabiting marine environments often encounter fluctuations in the quality and quantity of carbon inputs, ranging from simple sugars to large, complex compounds. Here, we experimentally tested how the chemical complexity of carbon substrates affects competition and growth dynamics between two heterotrophic marine isolates. We tracked cell density using species-specific polymerase chain reaction (PCR) assays and measured rates of microbial CO2 production along with associated isotopic signatures (13C and 14C) to quantify the impact of these interactions on organic matter remineralization. The observed cell densities revealed substrate-driven interactions: one species exhibited a competitive advantage and quickly outgrew the other when incubated with a labile compound whereas both species seemed to coexist harmoniously in the presence of more complex organic matter. Rates of CO2 respiration revealed that coincubation of these isolates enhanced organic matter turnover, sometimes by nearly 2-fold, compared to their incubation as mono-cultures. Isotopic signatures of respired CO2 indicated that coincubation resulted in a greater remineralization of macromolecular organic matter. These results demonstrate that simple substrates promote competition whereas high substrate complexity reduces competitiveness and promotes the partitioning of degradative activities into distinct niches, facilitating coordinated utilization of the carbon pool. Taken together, this study yields new insight into how the quality of organic matter plays a pivotal role in determining microbial interactions within marine environments.


Assuntos
Dióxido de Carbono , Carbono , Carbono/química , Processos Heterotróficos
2.
Microorganisms ; 11(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38138100

RESUMO

The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, the rapid deposition of organic-rich sediments, steep geothermal gradients, and abundant methane of mixed thermogenic and microbial origin. Subsurface sediment samples from eight drilling sites with distinct geochemical and thermal profiles were selected for DNA extraction and PCR amplification to explore the diversity of methane-cycling archaea in the Guaymas Basin subsurface. We performed PCR amplifications with general (mcrIRD), and ANME-1 specific primers that target the alpha (α) subunit of methyl coenzyme M reductase (mcrA). Diverse ANME-1 lineages associated with anaerobic methane oxidation were detected in seven out of the eight drilling sites, preferentially around the methane-sulfate interface, and in several cases, showed preferences for specific sampling sites. Phylogenetically, most ANME-1 sequences from the Guaymas Basin subsurface were related to marine mud volcanoes, seep sites, and the shallow marine subsurface. The most frequently recovered methanogenic phylotypes were closely affiliated with the hyperthermophilic Methanocaldococcaceae, and found at the hydrothermally influenced Ringvent site. The coolest drilling site, in the northern axial trough of Guaymas Basin, yielded the greatest diversity in methanogen lineages. Our survey indicates the potential for extensive microbial methane cycling within subsurface sediments of Guaymas Basin.

3.
Front Microbiol ; 14: 1324080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029175
4.
Nat Commun ; 14(1): 7768, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012208

RESUMO

Previous studies of microbial communities in subseafloor sediments reported that microbial abundance and diversity decrease with sediment depth and age, and microbes dominating at depth tend to be a subset of the local seafloor community. However, the existence of geographically widespread, subsurface-adapted specialists is also possible. Here, we use metagenomic and metatranscriptomic analyses of the hydrothermally heated, sediment layers of Guaymas Basin (Gulf of California, Mexico) to examine the distribution and activity patterns of bacteria and archaea along thermal, geochemical and cell count gradients. We find that the composition and distribution of metagenome-assembled genomes (MAGs), dominated by numerous lineages of Chloroflexota and Thermoproteota, correlate with biogeochemical parameters as long as temperatures remain moderate, but downcore increasing temperatures beyond ca. 45 ºC override other factors. Consistently, MAG size and diversity decrease with increasing temperature, indicating a downcore winnowing of the subsurface biosphere. By contrast, specific archaeal MAGs within the Thermoproteota and Hadarchaeota increase in relative abundance and in recruitment of transcriptome reads towards deeper, hotter sediments, marking the transition towards a specialized deep, hot biosphere.


Assuntos
Archaea , Crenarchaeota , Archaea/genética , Metagenoma/genética , Sedimentos Geológicos/química , Filogenia , Bactérias/genética , RNA Ribossômico 16S
5.
ISME J ; 17(11): 1907-1919, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37658181

RESUMO

Analyses of gene expression of subsurface bacteria and archaea provide insights into their physiological adaptations to in situ subsurface conditions. We examined patterns of expressed genes in hydrothermally heated subseafloor sediments with distinct geochemical and thermal regimes in Guaymas Basin, Gulf of California, Mexico. RNA recovery and cell counts declined with sediment depth, however, we obtained metatranscriptomes from eight sites at depths spanning between 0.8 and 101.9 m below seafloor. We describe the metabolic potential of sediment microorganisms, and discuss expressed genes involved in tRNA, mRNA, and rRNA modifications that enable physiological flexibility of bacteria and archaea in the hydrothermal subsurface. Microbial taxa in hydrothermally influenced settings like Guaymas Basin may particularly depend on these catalytic RNA functions since they modulate the activity of cells under elevated temperatures and steep geochemical gradients. Expressed genes for DNA repair, protein maintenance and circadian rhythm were also identified. The concerted interaction of many of these genes may be crucial for microorganisms to survive and to thrive in the Guaymas Basin subsurface biosphere.


Assuntos
Archaea , Sedimentos Geológicos , Sedimentos Geológicos/microbiologia , Filogenia , Bactérias , Expressão Gênica , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
6.
ISME J ; 17(11): 1828-1838, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37596411

RESUMO

Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and 12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin.


Assuntos
Euryarchaeota , Sedimentos Geológicos , Filogenia , Euryarchaeota/genética , Metano/metabolismo , RNA Ribossômico 16S
7.
Nat Microbiol ; 8(7): 1199-1212, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264141

RESUMO

Methanogenic and methanotrophic archaea produce and consume the greenhouse gas methane, respectively, using the reversible enzyme methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that can activate multicarbon alkanes have been recovered from archaeal enrichment cultures. These enzymes, called alkyl-coenzyme M reductase (Acrs), are widespread in the environment but remain poorly understood. Here we produced anoxic cultures degrading mid-chain petroleum n-alkanes between pentane (C5) and tetradecane (C14) at 70 °C using oil-rich Guaymas Basin sediments. In these cultures, archaea of the genus Candidatus Alkanophaga activate the alkanes with Acrs and completely oxidize the alkyl groups to CO2. Ca. Alkanophaga form a deep-branching sister clade to the methanotrophs ANME-1 and are closely related to the short-chain alkane oxidizers Ca. Syntrophoarchaeum. Incapable of sulfate reduction, Ca. Alkanophaga shuttle electrons released from alkane oxidation to the sulfate-reducing Ca. Thermodesulfobacterium syntrophicum. These syntrophic consortia are potential key players in petroleum degradation in heated oil reservoirs.


Assuntos
Fontes Hidrotermais , Petróleo , Archaea , Petróleo/metabolismo , Anaerobiose , Alcanos/metabolismo , Sulfatos/metabolismo
8.
Nature ; 618(7967): 992-999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316666

RESUMO

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Assuntos
Archaea , Eucariotos , Filogenia , Archaea/classificação , Archaea/citologia , Archaea/genética , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/genética , Células Eucarióticas/classificação , Células Eucarióticas/citologia , Células Procarióticas/classificação , Células Procarióticas/citologia , Conjuntos de Dados como Assunto , Duplicação Gênica , Evolução Molecular
9.
Front Microbiol ; 14: 1192029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250063

RESUMO

The production and anaerobic oxidation of methane (AOM) by microorganisms is widespread in organic-rich deep subseafloor sediments. Yet, the organisms that carry out these processes remain largely unknown. Here we identify members of the methane-cycling microbial community in deep subsurface, hydrate-containing sediments of the Peru Trench by targeting functional genes of the alpha subunit of methyl coenzyme M reductase (mcrA). The mcrA profile reveals a distinct community zonation that partially matches the zonation of methane oxidizing and -producing activity inferred from sulfate and methane concentrations and carbon-isotopic compositions of methane and dissolved inorganic carbon (DIC). McrA appears absent from sulfate-rich sediments that are devoid of methane, but mcrA sequences belonging to putatively methane-oxidizing ANME-1a-b occur from the zone of methane oxidation to several meters into the methanogenesis zone. A sister group of ANME-1a-b, referred to as ANME-1d, and members of putatively aceticlastic Methanothrix (formerly Methanosaeta) occur throughout the remaining methanogenesis zone. Analyses of 16S rRNA and mcrA-mRNA indicate that the methane-cycling community is alive throughout (rRNA to 230 mbsf) and active in at least parts of the sediment column (mRNA at 44 mbsf). Carbon-isotopic depletions of methane relative to DIC (-80 to -86‰) suggest mostly methane production by CO2 reduction and thus seem at odds with the widespread detection of ANME-1 and Methanothrix. We explain this apparent contradiction based on recent insights into the metabolisms of both ANME-1 and Methanothricaceae, which indicate the potential for methanogenetic growth by CO2 reduction in both groups.

11.
Thorac Cardiovasc Surg ; 71(S 04): e8-e12, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37037222

RESUMO

BACKGROUND: Fluid overload is a serious complication in the treatment of infants with extracorporeal membrane oxygenation (ECMO). Volume overload leads to prolonged ECMO therapy if left untreated. The renal replacement therapy of choice in pediatric patients is peritoneal dialysis or conventional dialysis using a "large" hemofiltration machine via a Shaldon catheter or directly connected to the ECMO system. This study describes the implementation of a novel minimized hemodiafiltration (HDF) system in pediatric patients on ECMO. METHODS: This retrospective analysis included 13 infants up to 5 kg who underwent 15 veno-arterial (V-A) ECMO runs with HDF. A minimized HDF system is integrated into an existing ECMO system (18-mL priming volume), connected post-oxygenation to the venous line, before the ECMO pump. Two infusion pumps are attached to the inlet and outlet of the hemofilter to control the HDF system.In addition to retention values (creatine and urea) at six defined time points, flow rates, dialysis parameters, and volume withdrawal were examined, as well as the number of HDF system changes. RESULTS: With a mean ECMO runtime of 156 hours, the HDF system was utilized for 131 hours. The mean blood flow through the hemofilter was 192 mL/min. The mean dialysate flow was 170 mL/h, with a mean volume deprivation of 39 mL/h. The HDF system was changed once in seven cases and twice in three cases. CONCLUSION: There were no complications with the minimized HDF system in all 15 applications. It allows safe patient volume management when treating infants with ECMO, with effective elimination of urinary substances.


Assuntos
Oxigenação por Membrana Extracorpórea , Hemodiafiltração , Humanos , Lactente , Criança , Hemodiafiltração/efeitos adversos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Diálise Renal
13.
Appl Environ Microbiol ; 89(3): e0001823, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36847505

RESUMO

The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, hydrothermal activity, and organic matter accumulation on the seafloor due to high sedimentation rates. In the hydrothermal sediments of Guaymas Basin, microbial community compositions and coexistence patterns change across steep gradients of temperature, potential carbon sources, and electron acceptors. Nonmetric multidimensional scaling and guanine-cytosine percentage analyses reveal that the bacterial and archaeal communities adjust compositionally to their local temperature regime. Functional inference using PICRUSt shows that microbial communities consistently maintain their predicted biogeochemical functions in different sediments. Phylogenetic profiling shows that microbial communities retain distinct sulfate-reducing, methane-oxidizing, or heterotrophic lineages within specific temperature windows. The preservation of similar biogeochemical functions across microbial lineages with different temperature adaptations stabilizes the hydrothermal microbial community in a highly dynamic environment. IMPORTANCE Hydrothermal vent sites have been widely studied to investigate novel bacteria and archaea that are adapted to these extreme environments. However, community-level analyses of hydrothermal microbial ecosystems look beyond the presence and activity of particular types of microbes and examine to what extent the entire community of bacteria and archaea is adapted to hydrothermal conditions; these include elevated temperatures, hydrothermally generated carbon sources, and inorganic electron donors and acceptors that are characteristic for hydrothermal environments. In our case study of bacterial and archaeal communities in hydrothermal sediments of Guaymas Basin, we found that sequence-inferred microbial function was maintained in differently structured bacterial and archaeal communities across different samples and thermal regimes. The resulting preservation of biogeochemical functions across thermal gradients is an important factor in explaining the consistency of the microbial core community in the dynamic sedimentary environment of Guaymas Basin.


Assuntos
Fontes Hidrotermais , Microbiota , Filogenia , Sedimentos Geológicos/microbiologia , Archaea/genética , Bactérias/genética , Carbono , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genética
14.
Perfusion ; 38(8): 1560-1564, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36121780

RESUMO

INTRODUCTION: A basic prerequisite for a good surgical outcome in heart surgery is optimal myocardial protection. However, cardioplegia strategies used in adult cardiac surgery are not directly transferable to infant hearts. Paediatric microplegia, analogous to Calafiore cardioplegia used in adult cardiac surgery, offers the advantage of safe myocardial protection without haemodilution. The use of concentration-dependent paediatric microplegia is new in clinical implementation. MATERIAL AND METHODS: Paediatric microplegia has been in clinical use in our institution since late 2014. It is applied via an 1/8 inch tube of a S5-HLM roller pump (LivaNova, Italy). As cardioplegic additive, a mixture of potassium (K) 20 mL (2 mmol/mL potassium chloride 14.9% Braun) and magnesium (Mg) 10 mL (4 mmol/mL Mg-sulphate Verla® i. v. 50%) is fixed into a syringe-pump (B. Braun, Germany). This additive is mixed with arterial patient blood from the oxygenator in different flowdependent ratios to form an effective cardioplegia. TECHNIQUE: After microplegia application of initially 25 mmol/L K with 11 mmol/L Mg for 2 min, a safe cardioplegic cardiac arrest is achieved, which after release of the coronary circulation, immediately returns to a spontaneous cardiac-rhythm. In the case of prolonged aortic clamping, microplegia is repeated every 20 min with a reduction of the application dose of K by 20% and Mg by 30% (20 mmol/L K; 8.5 mmol/L Mg) and a further reduction down to a maintenance dose (15 mmol/L K; 6 mmol/L Mg) after additional 20 min. SUMMARY: The microplegia adapted to the needs of paediatric myocardium is convincing due to its simple technical implementation for the perfusionist while avoiding haemodilution. However, the required intraoperative interval of microplegia of approx. 20 min demands adapted intraoperative management from the surgeon.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Parada Cardíaca Induzida , Adulto , Humanos , Criança , Miocárdio , Itália , Soluções Cardioplégicas
15.
Front Cardiovasc Med ; 9: 1055228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465431

RESUMO

Background: Due to rapid medical and technological progress, more and more pediatric patients with terminal cardiac insufficiency are being implanted with a ventricular assist device as a bridge to transplant without legal approval for hospital discharge. EXCOR® Active is a recently developed mobile driving unit for the EXCOR® ventricular assist device (EXCOR® VAD) with a long-lasting battery life that can manage small blood pumps, offering improved mobility for pediatric patients. This study strives to elaborate the requirements necessary for a safe home healthcare environment (HHE) for pediatric patients on EXCOR® VAD powered by the EXCOR® Active driving unit. Materials and methods: Patient- and device-related preconditions (medical, ethical, psychological, technical, structural, organizational) were analyzed with regard to feasibility and safety in three individual patient cases. Included were pediatric patients with terminal cardiac insufficiency in a stable medical condition receiving in-hospital treatment with a univentricular or biventricular EXCOR® VAD powered by EXCOR® Active. Analysis was single-center, data was obtained 05/2020-02/2022. Results: A total of three patients on EXCOR® VAD were identified for HHE treatment with the EXCOR® Active driving unit. Switch was performed safely and increased mobility led to improved psychomotor development and improved quality of life. No complications directly related to HHE-treatment occurred. One patient recently underwent an orthotopic heart transplant, one patient remains in HHE, and one patient died due to a complication not related to the HHE. Ethical approval for off-label use was obtained and patients and parents were given the required technical training and psychological support. Caregivers and medical professionals involved in the patients' care at home were briefed intensely. Remote consultations were implemented and interdisciplinary in-hospital checks reduced to a long-term 4-week-scheme. Conclusion: While it is challenging to discharge pediatric patients being treated with a paracorporeal ventricular assist device (EXCOR® VAD) from hospital, it is feasible and can be managed safely with the novel driving unit EXCOR® Active. A HHE may help to improve patients' psychomotor development, offer normalized social contacts and strengthen both patients' and parents' physical and mental resources. Legal approval and another study with a larger sample size are warranted.

16.
Front Microbiol ; 13: 988871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212815

RESUMO

In seafloor sediments, the anaerobic oxidation of methane (AOM) consumes most of the methane formed in anoxic layers, preventing this greenhouse gas from reaching the water column and finally the atmosphere. AOM is performed by syntrophic consortia of specific anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Cultures with diverse AOM partners exist at temperatures between 12°C and 60°C. Here, from hydrothermally heated sediments of the Guaymas Basin, we cultured deep-branching ANME-1c that grow in syntrophic consortia with Thermodesulfobacteria at 70°C. Like all ANME, ANME-1c oxidize methane using the methanogenesis pathway in reverse. As an uncommon feature, ANME-1c encode a nickel-iron hydrogenase. This hydrogenase has low expression during AOM and the partner Thermodesulfobacteria lack hydrogen-consuming hydrogenases. Therefore, it is unlikely that the partners exchange hydrogen during AOM. ANME-1c also does not consume hydrogen for methane formation, disputing a recent hypothesis on facultative methanogenesis. We hypothesize that the ANME-1c hydrogenase might have been present in the common ancestor of ANME-1 but lost its central metabolic function in ANME-1c archaea. For potential direct interspecies electron transfer (DIET), both partners encode and express genes coding for extracellular appendages and multiheme cytochromes. Thermodesulfobacteria encode and express an extracellular pentaheme cytochrome with high similarity to cytochromes of other syntrophic sulfate-reducing partner bacteria. ANME-1c might associate specifically to Thermodesulfobacteria, but their co-occurrence is so far only documented for heated sediments of the Gulf of California. However, in the deep seafloor, sulfate-methane interphases appear at temperatures up to 80°C, suggesting these as potential habitats for the partnership of ANME-1c and Thermodesulfobacteria.

17.
Front Microbiol ; 13: 831828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356530

RESUMO

Hydrocarbons are degraded by specialized types of bacteria, archaea, and fungi. Their occurrence in marine hydrocarbon seeps and sediments prompted a study of their role and their potential interactions, using the hydrocarbon-rich hydrothermal sediments of Guaymas Basin in the Gulf of California as a model system. This sedimented vent site is characterized by localized hydrothermal circulation that introduces seawater sulfate into methane- and hydrocarbon-rich sediments, and thus selects for diverse hydrocarbon-degrading communities of which methane, alkane- and aromatics-oxidizing sulfate-reducing bacteria and archaea have been especially well-studied. Current molecular and cultivation surveys are detecting diverse fungi in Guaymas Basin hydrothermal sediments, and draw attention to possible fungal-bacterial interactions. In this Hypothesis and Theory article, we report on background, recent results and outcomes, and underlying hypotheses that guide current experiments on this topic in the Edgcomb and Teske labs in 2021, and that we will revisit during our ongoing investigations of bacterial, archaeal, and fungal communities in the deep sedimentary subsurface of Guaymas Basin.

18.
Sci Rep ; 12(1): 2675, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177734

RESUMO

Life at hydrothermal vent sites is based on chemosynthetic primary producers that supply heterotrophic microorganisms with substrates and generate biomass for higher trophic levels. Often, chemoautotrophs associate with the hydrothermal vent megafauna. To investigate attached bacterial and archaeal communities on deep-sea squat lobsters, we collected ten specimens from a hydrothermal vent in the Guaymas Basin (Gulf of California). All animals were identified as Munidopsis alvisca via morphological and molecular classification, and intraspecific divergence was determined. Amplicon sequencing of microbial DNA and cDNA revealed significant differences between microbial communities on the carapaces of M. alvisca and those in ambient sea water. Major epibiotic bacterial taxa were chemoautotrophic Gammaproteobacteria, such as Thiotrichaceae and Methylococcaceae, while archaea were almost exclusively represented by sequences affiliated with Ca. Nitrosopumilus. In sea water samples, Marine Group II and III archaea and organoheterotrophic Alphaproteobacteria, Flavobacteriia and Planctomycetacia were more dominant. Based on the identified taxa, we assume that main metabolic processes, carried out by M. alvisca epibiota, include ammonia, methane and sulphide oxidation. Considering that M. alvisca could benefit from sulphide detoxification by its epibiota, and that attached microbes are supplied with a stable habitat in proximity to substrate-rich hydrothermal fluids, a mutualistic host-microbe relationship appears likely.


Assuntos
Anomuros/microbiologia , Archaea , Bactérias , Microbiota , Animais , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Água do Mar/microbiologia
19.
ISME J ; 16(1): 307-320, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331018

RESUMO

Deltaproteobacteria, now proposed to be the phyla Desulfobacterota, Myxococcota, and SAR324, are ubiquitous in marine environments and play essential roles in global carbon, sulfur, and nutrient cycling. Despite their importance, our understanding of these bacteria is biased towards cultured organisms. Here we address this gap by compiling a genomic catalog of 1 792 genomes, including 402 newly reconstructed and characterized metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments. Phylogenomic analyses reveal that many of these novel MAGs are uncultured representatives of Myxococcota and Desulfobacterota that are understudied. To better characterize Deltaproteobacteria diversity, metabolism, and ecology, we clustered ~1 500 genomes based on the presence/absence patterns of their protein families. Protein content analysis coupled with large-scale metabolic reconstructions separates eight genomic clusters of Deltaproteobacteria with unique metabolic profiles. While these eight clusters largely correspond to phylogeny, there are exceptions where more distantly related organisms appear to have similar ecological roles and closely related organisms have distinct protein content. Our analyses have identified previously unrecognized roles in the cycling of methylamines and denitrification among uncultured Deltaproteobacteria. This new view of Deltaproteobacteria diversity expands our understanding of these dominant bacteria and highlights metabolic abilities across diverse taxa.


Assuntos
Deltaproteobacteria , Metagenoma , Bactérias/genética , Deltaproteobacteria/genética , Genômica , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA