Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 9(1): 17633, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776357

RESUMO

Obesity has become a worldwide health crisis and is associated with a plethora of comorbidities. The multi-organ effects of obesity have been linked to ectopic lipid accumulation. Thus, there is an urgent need to tackle the obesity crisis by developing effective lipid-lowering therapies. 2-hydroxypropyl-ß-Cyclodextrin (2HP-ß-CD) has been previously shown to reduce lysosomal cholesterol accumulation in a murine model of Niemann Pick Type C (NPC) disease. Using a murine model of Western diet-induced obesity (DIO), we report the effects of 2HP-ß-CD in counteracting weight gain, expansion of adipose tissue mass and ectopic lipid accumulation. Interestingly, DIO caused intracellular storage of neutral lipids in hepatic tissues and of phospholipids in kidneys, both of which were prevented by 2HP-ß-CD. Importantly, this report brings attention to the nephrotoxic effects of 2HP-ß-CD: renal tubular damage, inflammation and fibrosis. These effects may be overlooked, as they are best appreciated upon assessment of renal histology.


Assuntos
Dieta Ocidental/efeitos adversos , Hipolipemiantes/uso terapêutico , Nefropatias/induzido quimicamente , Obesidade/etiologia , beta-Ciclodextrinas/uso terapêutico , Animais , Colesterol/análise , Modelos Animais de Doenças , Hipolipemiantes/efeitos adversos , Rim/química , Rim/efeitos dos fármacos , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle , Fosfolipídeos/análise , Triglicerídeos/análise , beta-Ciclodextrinas/efeitos adversos
2.
BMC Nephrol ; 19(1): 78, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609537

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is characterized by sustained tissue damage and ongoing tubulo-interstitial inflammation and fibrosis. Pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and NOD-like receptors (NLRs) can sense endogenous ligands released upon tissue damage, leading to sterile inflammation and eventually irreversible kidney disease. It is known that NOD1 and NOD2 contribute to the pathogenesis of various inflammatory diseases, including acute kidney injury. However their role in chronic kidney disease is largely unknown. The aim of this study was therefore to investigate the contribution of NOD1 and NOD2 in renal interstitial fibrosis and obstructive nephropathy. METHODS: To do so, we performed unilateral ureteral obstruction (UUO) in wild type (WT) and NOD1/NOD2 double deficient (DKO) mice and analysed renal damage, fibrosis and inflammation. Data were analysed using the non-parametric Mann-Whitney U-test. RESULTS: Minor changes in inflammatory response were observed in NOD1/2 DKO mice, while no effects were observed on renal injury and the development of fibrosis. CONCLUSION: No difference in renal injury and fibrosis between WT and NOD1/NOD2 DKO mice following obstructive nephropathy induced by ureteral obstruction.


Assuntos
Injúria Renal Aguda/metabolismo , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD2/deficiência , Insuficiência Renal Crônica/metabolismo , Obstrução Ureteral/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/genética , Animais , Feminino , Fibrose/etiologia , Fibrose/genética , Fibrose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Obstrução Ureteral/complicações , Obstrução Ureteral/genética
3.
Biol Open ; 1(12): 1239-47, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23259058

RESUMO

It is indispensable to thoroughly characterize each animal model in order to distinguish between primary and secondary effects of genetic changes. The present study analyzed Nod1 and Nod2 double deficient (Nod1/2 DKO) mice under physiological and inflammatory conditions. Nod1 and Nod2 are members of the Nucleotide-binding domain and Leucine-rich repeat containing Receptor (NLR) family. Several inflammatory disorders, such as Crohn's disease and asthma, are linked to genetic changes in either Nod1 or Nod2. These associations suggest that Nod1 and Nod2 play important roles in regulating the immune system.Three-month-old wildtype (Wt) and Nod1/2 DKO mice were sacrificed, body and organ weight were determined, and blood was drawn. Except for lower liver weight in Nod1/2 DKO mice, no differences were found in body/organ weight between both strains. Leukocyte count and composition was comparable. No significant changes in analyzed plasma biochemical markers were found. Additionally, intestinal and vascular permeability was determined. Nod1/2 DKO mice show increased susceptibility for intestinal permeability while vascular permeability was not affected. Next we induced septic shock and organ damage by administering LPS+PGN intraperitoneally to Wt and Nod1/2 DKO mice and sacrificed animals after 2 and 24 hours. The systemic inflammatory and metabolic response was comparable between both strains. However, renal response was different as indicated by partly preserved kidney function and tubular epithelial cell damage in Nod1/2 DKO at 24 hours. Remarkably, renal inflammatory mediators Tnfα, KC and Il-10 were significantly increased in Nod1/2 DKO compared with Wt mice at 2 hours.Systematic analysis of Nod1/2 DKO mice revealed a possible role of Nod1/2 in the development of renal disease during systemic inflammation.

4.
Int Immunol ; 22(6): 433-42, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20410256

RESUMO

Chemokines are important players in the migration of leukocytes to sites of injury and are also involved in angiogenesis, development and wound healing. In this study, we performed microarray analyses to identify chemokines that play a role during the inflammatory and repair phase after renal ischemia/reperfusion (I/R) injury and investigated the temporal relationship between chemokine expression, leukocyte accumulation and renal damage/repair. C57Bl/6 mice were subjected to unilateral ischemia for 45 min and sacrificed 3 h, 1 day and 7 days after reperfusion. From ischemic and contralateral kidney, RNA was isolated and hybridized to a microarray. Microarray results were validated with quantitative real-time reverse transcription-PCR (QRT-PCR) on RNA from an independent experiment. (Immuno)histochemical analyses were performed to determine renal damage/repair and influx of leukocytes. Twenty out of 114 genes were up-regulated at one or more reperfusion periods. All these genes were up-regulated 7 days after I/R. Up-regulated genes included CC chemokines MCP-1 and TARC, CXC chemokines KC and MIP-2alpha, chemokine receptors Ccr1 and Cx3cr1 and related genes like matrix metalloproteinases. Microarray data of 1 and 7 days were confirmed for 17 up-regulated genes by QRT-PCR. (Immuno)histochemical analysis showed that the inflammatory and repair phase after renal I/R injury take place after, respectively, 1 and 7 days. Interestingly, chemokine expression was highest during the repair phase. In addition, expression profiles showed a biphasic expression of all up-regulated CXC chemokines coinciding with the early inflammatory and late repair phase. In conclusion, we propose that temporal expression of chemokines is a crucial factor in the regulation of renal I/R injury and repair.


Assuntos
Quimiocinas/metabolismo , Rim/imunologia , Receptores de Quimiocinas/metabolismo , Traumatismo por Reperfusão/imunologia , Animais , Contagem de Células , Quimiocinas/genética , Quimiocinas/imunologia , Perfilação da Expressão Gênica , Humanos , Imunoquímica , Inflamação , Rim/metabolismo , Rim/patologia , Rim/cirurgia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Neutrófilos/patologia , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Linfócitos T/patologia
5.
PLoS One ; 2(5): e469, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17520028

RESUMO

Kidney ischemia/reperfusion injury (I/R) is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.


Assuntos
Concentração de Íons de Hidrogênio , Rim/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose , Western Blotting , Proliferação de Células , Mediadores da Inflamação/fisiologia , Rim/irrigação sanguínea , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA