Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Vis Exp ; (208)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949317

RESUMO

Despite important advancements in the diagnosis and treatment of cardiovascular diseases (CVDs), the field is in urgent need of increased research and scientific advancement. As a result, innovation, improvement and/or repurposing of the available research toolset can provide improved testbeds for research advancement. Langendorff perfusion is an extremely valuable research technique for the field of CVD research that can be modified to accommodate a wide array of experimental needs. This tailoring can be achieved by personalizing a large number of perfusion parameters, including perfusion pressure, flow, perfusate, temperature, etc. This protocol demonstrates the versatility of Langendorff perfusion and the feasibility of achieving longer perfusion times (4 h) without graft function loss by utilizing lower perfusion pressures (30-35 mmHg). Achieving extended perfusion times without graft damage and/or function loss caused by the technique itself has the potential to eliminate confounding elements from experimental results. In effect, in scientific circumstances where longer perfusion times are relevant to the experimental needs (i.e., drug treatments, immunological response analysis, gene editing, graft preservation, etc.), lower perfusion pressures can be key for scientific success.


Assuntos
Perfusão , Animais , Perfusão/métodos , Ratos , Transplante de Coração/métodos , Preparação de Coração Isolado/métodos
2.
Front Transplant ; 3: 1353124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993754

RESUMO

Background: Donation after circulatory death (DCD) grafts are vital for increasing available donor organs. Gradual rewarming during machine perfusion has proven effective in mitigating reperfusion injury and enhancing graft quality. Limited data exist on artificial oxygen carriers as an effective solution to meet the increasing metabolic demand with temperature changes. The aim of the present study was to assess the efficacy and safety of utilizing a hemoglobin-based oxygen carrier (HBOC) during the gradual rewarming of DCD rat livers. Methods: Liver grafts were procured after 30 min of warm ischemia. The effect of 90 min of oxygenated rewarming perfusion from ice cold temperatures (4 °C) to 37 °C with HBOC after cold storage was evaluated and the results were compared with cold storage alone. Reperfusion at 37 °C was performed to assess the post-preservation recovery. Results: Gradual rewarming with HBOC significantly enhanced recovery, demonstrated by markedly lower lactate levels and reduced vascular resistance compared to cold-stored liver grafts. Increased bile production in the HBOC group was noted, indicating improved liver function and bile synthesis capacity. Histological examination showed reduced cellular damage and better tissue preservation in the HBOC-treated livers compared to those subjected to cold storage alone. Conclusion: This study suggests the safety of using HBOC during rewarming perfusion of rat livers as no harmful effect was detected. Furthermore, the viability assessment indicated improvement in graft function.

3.
Res Sq ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39011100

RESUMO

Preserving organs at subzero temperatures with halted metabolic activity holds the potential to prolong preservation and expand the donor organ pool for transplant. Our group recently introduced partial freezing, a novel approach in high-subzero storage at -15°C, enabling 5 days storage of rodent livers through precise control over ice nucleation and unfrozen fraction. However, increased vascular resistance and tissue edema suggested a need for improvements to extend viable preservation. Here, we describe an optimized partial freezing protocol with key optimizations including increased concentration of propylene glycol to reduce ice recrystallization and maintained osmotic balance through an increase in bovine serum albumin, all while minimizing sheer stress during cryoprotectant unloading with an acclimation period. These approaches ensured the viability during preservation and recovery processes, promoting liver function and ensuring optimal preservation. This was evidenced by increased oxygen consumption, decreased vascular resistance and edema. Ultimately, we show that using the optimized protocol, livers can be stored for 10 days with comparable vascular resistance and lactate levels to 5 days, outperforming the viability of time-matched cold stored livers as the current gold standard. This study represents a significant advancement in expanding organ availability through prolonged preservation and thereby revolutionizing transplant medicine.

4.
Ann Surg Open ; 5(1): e368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38883934

RESUMO

Objective: To assess the effects of the 2020 United States Public Health Service (PHS) "Increased Risk" Guidelines update. Background: Donors labeled as "Increased Risk" for transmission of infectious diseases have been found to have decreased organ utilization rates despite no significant impact on recipient survival. Recently, the PHS provided an updated guideline focused on "Increased Risk" organ donors, which included the removal of the "Increased Risk" label and the elimination of the separate informed consent form, although the actual increased risk status of donors is still ultimately transmitted to transplant physicians. We sought to analyze the effect of this update on organ utilization rates. Methods: This was a retrospective analysis of the Organ Procurement and Transplantation Network database which compared donor organ utilization in the 2 years before the June 2020 PHS Guideline update for increased-risk donor organs (June 2018-May 2020) versus the 2 years after the update (August 2020-July 2022). The organ utilization rate for each donor was determined by dividing the number of organs transplanted by the total number of organs available for procurement. Student t test and multivariable logistic regression models were used for analysis. Results: There were 17,272 donors in the preupdate cohort and 17,922 donors in the postupdate cohort; of these, 4,977 (28.8%) and 3,893 (21.7%) donors were considered "Increased Risk", respectively. There was a 2% decrease in overall organ utilization rates after the update, driven by a 3% decrease in liver utilization rates and a 2% decrease in lung utilization rates. After multivariable adjustment, donors in the postupdate cohort had 10% decreased odds of having all organs transplanted. Conclusions: The 2020 PHS "Increased Risk" Donor Guideline update was not associated with an increase in organ utilization rates in the first 2 years after its implementation, despite a decrease in the proportion of donors considered to be at higher risk. Further efforts to educate the community on the safe usage of high-risk organs are needed and may increase organ utilization.

5.
Cryobiology ; 116: 104926, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38880369

RESUMO

Current methods of storing explanted donor livers at 4 °C in University of Wisconsin (UW) solution result in loss of graft function and ultimately lead to less-than-ideal outcomes post transplantation. Our lab has previously shown that supplementing UW solution with 35-kilodalton polyethylene glycol (PEG) has membrane stabilizing effects for cold stored primary rat hepatocytes in suspension. Expanding on past studies, we here investigate if PEG has the same beneficial effects in an adherent primary rat hepatocyte cold storage model. In addition, we investigated the extent of cold-induced apoptosis through treating cold-stored hepatocytes with pan caspase inhibitor emricasan. In parallel to storage at the current cold storage standard of 4 °C, we investigated the effects of lowering the storage temperature to -4 °C, at which the storage solution remains ice-free due to the supercooling phenomenon. We show the addition of 5 % PEG to the storage medium significantly reduced the release of lactate dehydrogenase (LDH) in plated rat hepatocytes and a combinatorial treatment with emricasan maintains hepatocyte viability and morphology following recovery from cold storage. These results show that cold-stored hepatocytes undergo multiple mechanisms of cold-induced injury and that PEG and emricasan treatment in combination with supercooling may improve cell and organ preservation.

6.
Heliyon ; 10(8): e29519, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660283

RESUMO

Background: Liver donation after cardiac death (DCD) makes up a small percentage of the organs used in transplantation and poses a higher risk of graft loss compared to donation after brain death (DBD); this is a result of ischemia reperfusion for which the exact injury mechanisms are currently not fully understood. However, reperfusion injury has been shown to lead to necrosis as well as apoptosis through oxidative stress and mitochondrial dysfunction. In this work, we propose that use of the pro-survival, anti-apoptotic CEPT cocktail in post-ischemia normothermic machine perfusion (NMP) may improve recovery in rat livers subjected to extended durations of warm ischemia. Materials and Methods: Livers procured from male Lewis rats were subjected to 90 min of warm ischemia, followed by 6 h of NMP where they were treated either with the survival-enhancing anti-apoptotic cocktail (CEPT), the vehicle (DMSO) or the base media with no additives. Results: The CEPT-treated group exhibited lower expression of hepatic injury biomarkers, and improvement in a range of hepatocellular symptoms associated with the hepatic parenchyma, biliary epithelium and the sinusoidal endothelium, including recovery of bile secretion and lowered vascular resistance. Conclusions: This study's findings suggest apoptosis plays a more significant role in ischemia-reperfusion injury than previously understood, and provide useful insight for further investigation of the specific underlying mechanisms and development of novel treatment methods.

7.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465950

RESUMO

Burn wound healing is a complex and long process. Despite extensive experience, plastic surgeons and specialized teams in burn centers still face significant challenges. Among these challenges, the extent of the burned soft tissue can evolve in the early phase, creating a delicate balance between conservative treatments and necrosing tissue removal. Thermal burns are the most common type, and burn depth varies depending on multiple parameters, such as temperature and exposure time. Burn depth also varies in time, and the secondary aggravation of the "shadow zone" remains a poorly understood phenomenon. In response to these challenges, several innovative treatments have been studied, and more are in the early development phase. Nanoparticles in modern wound dressings and artificial skin are examples of these modern therapies still under evaluation. Taken together, both burn diagnosis and burn treatments need substantial advancements, and research teams need a reliable and relevant model to test new tools and therapies. Among animal models, swine are the most relevant because of their strong similarities in skin structure with humans. More specifically, Yucatan minipigs show interesting features such as melanin pigmentation and slow growth, allowing for studying high phototypes and long-term healing. This article aims to describe a reliable and reproducible protocol to study multi-depth burn wounds in Yucatan minipigs, enabling long-term follow-up and providing a relevant model for diagnosis and therapeutic studies.


Assuntos
Pele , Cicatrização , Suínos , Animais , Humanos , Porco Miniatura , Cicatrização/fisiologia , Bandagens , Modelos Animais de Doenças
8.
Transplant Direct ; 10(4): e1609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38481967

RESUMO

Background: Brief normothermic machine perfusion is increasingly used to assess and recondition grafts before transplant. During normothermic machine perfusion, metabolic activity is typically maintained using red blood cell (RBC)-based solutions. However, the utilization of RBCs creates important logistical constraints. This study explored the feasibility of human kidney normothermic perfusion using William's E-based perfusate with no additional oxygen carrier. Methods: Sixteen human kidneys declined for transplant were perfused with a perfusion solution containing packed RBCs or William's E medium only for 6 h using a pressure-controlled system. The temperature was set at 37 °C. Renal artery resistance, oxygen extraction, metabolic activity, energy metabolism, and histological features were evaluated. Results: Baseline donor demographics were similar in both groups. Throughout perfusion, kidneys perfused with William's E exhibited improved renal flow (P = 0.041) but similar arterial resistance. Lactic acid levels remained higher in kidneys perfused with RBCs during the first 3 h of perfusion but were similar thereafter (P = 0.95 at 6 h). Throughout perfusion, kidneys from both groups exhibited comparable behavior regarding oxygen consumption (P = 0.41) and reconstitution of ATP tissue concentration (P = 0.55). Similarly, nicotinamide adenine dinucleotide levels were preserved during perfusion. There was no evidence of histological damage caused by either perfusate. Conclusions: In human kidneys, William's E medium provides a logistically convenient, off-the-shelf alternative to packed RBCs for up to 6 h of normothermic machine perfusion.

9.
Sci Rep ; 14(1): 7328, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538723

RESUMO

Organ transplantation is a life-saving procedure affecting over 100,000 people on the transplant waitlist. Ischemia reperfusion injury (IRI) is a major challenge in the field as it can cause post-transplantation complications and limit the use of organs from extended criteria donors. Machine perfusion technology has the potential to mitigate IRI; however, it currently fails to achieve its full potential due to a lack of highly sensitive and specific assays to assess organ quality during perfusion. We developed a real-time and non-invasive method of assessing organs during perfusion based on mitochondrial function and injury using resonance Raman spectroscopy. It uses a 441 nm laser and a high-resolution spectrometer to quantify the oxidation state of mitochondrial cytochromes during perfusion. This index of mitochondrial oxidation, or 3RMR, was used to understand differences in mitochondrial recovery of cold ischemic rodent livers during machine perfusion at normothermic temperatures with an acellular versus cellular perfusate. Measurement of the mitochondrial oxidation revealed that there was no difference in 3RMR of fresh livers as a function of normothermic perfusion when comparing acellular versus cellular-based perfusates. However, following 24 h of static cold storage, 3RMR returned to baseline faster with a cellular-based perfusate, yet 3RMR progressively increased during perfusion, indicating injury may develop over time. Thus, this study emphasizes the need for further refinement of a reoxygenation strategy during normothermic machine perfusion that considers cold ischemia durations, gradual recovery/rewarming, and risk of hemolysis.


Assuntos
Transplante de Fígado , Humanos , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Análise Espectral Raman , Fígado/metabolismo , Perfusão/métodos , Mitocôndrias
11.
Cryobiology ; 114: 104810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040049

RESUMO

Each individual cell type typically requires a unique set of conditions for optimal cryopreservation outcome, which relates to its specific response to cryoprotective agent (CPA) toxicity, osmotic behavior and sensitivity to ice crystallization. Cryopreservation of heterogenous cell populations is therefore exceedingly difficult as it requires separate and often conflicting conditions for each cell type. Conversely, these contrasting conditions could be utilized to favor cryogenic preference of a single cell population within a heterogenous sample, leading to its enrichment by elimination of remaining cells. To establish proof-of-concept for this overall approach, a protocol was developed for the cryogenic enrichment of Plasmodium falciparum gametocytes from whole blood. To accomplish this goal, we evaluated the effects of CPAs and cooling conditions during cryopreservation of whole blood samples spiked with P. falciparum gametocytes. We identified that cooling to -80 °C at a rate of -1 °C/min in the presence of 11 % glycerol selectively favors recovery of gametocytes. This protocol eliminates 95.3 ± 1.7 % of total blood cells and recovers 43.2 ± 6.5 % of parasites, leading to a 19-fold enrichment as assessed by microscopic examination of blood smears. This protocol is tunable, where gametocyte enrichment 900-fold may be feasible, however there is an apparent tradeoff in overall parasite recovery. Although translation of this protocol for point-of-care testing for malaria presents many challenges, the overall approach of cryogenic purification may prove useful for alternative diagnostic applications.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Criopreservação/métodos , Malária Falciparum/parasitologia , Microscopia
12.
Res Sq ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38076969

RESUMO

Current methods of storing explanted donor livers at 4°C in University of Wisconsin (UW) solution result in loss of graft function and ultimately leads to less-than-ideal outcomes post transplantation. Our lab has previously shown that supplementing UW solution with 35-kilodalton polyethylene glycol (PEG) has membrane stabilizing effects for cold stored primary rat hepatocytes in suspension. Expanding on past studies, we here investigate if PEG has the same beneficial effects in an adherent primary rat hepatocyte cold storage model. In addition, we investigated the extent of cold-induced apoptosis through treating cold-stored hepatocytes with pan caspase inhibitor emricasan. In parallel to storage at the current cold storage standard of 4°C, we investigated the effects of lowering the storage temperature to -4°C, at which the storage solution remains ice-free due to the supercooling phenomenon. We show the addition of 5% PEG to the storage medium significantly reduced the release of lactate dehydrogenase (LDH) in plated rat hepatocytes and a combinatorial treatment with emricasan maintains hepatocyte viability and morphology following recovery from cold storage. These results show that cold-stored hepatocytes undergo multiple mechanisms of cold-induced injury and that PEG and emricasan treatment in combination with supercooling may improve cell and organ preservation.

13.
Res Sq ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37674730

RESUMO

Liver donation after cardiac death (DCD) makes up a small percentage of the donor pool and poses a higher risk of graft loss compared to donation after brain death (DBD); this is a result of ischemia reperfusion for which the exact injury mechanisms are currently not fully understood. However, reperfusion injury has been shown to lead to necrosis as well as apoptosis at the cellular level. In this work, we propose that use of the pro-survival, anti-apoptotic CEPT cocktail in post-ischemia normothermic machine perfusion (NMP) may improve recovery in rat livers subjected to extended durations of warm ischemia. Livers procured from male lewis rats were subjected to 90 minutes of warm ischemia, followed by 6 hours of NMP where they were treated with the survival-enhancing anti-apoptotic cocktail (CEPT), the vehicle (DMSO) or the base media with no additives. The CEPT-treated group exhibited lower expression of hepatic injury biomarkers, and improvement in a range of hepatocellular functions associated with the hepatic parenchyma, biliary epithelium and especially the sinusoidal endothelium. This study's findings provide useful insight for further investigation of the extent of apoptotic contribution to ischemia reperfusion injury (IRI).

14.
FASEB J ; 37(10): e23187, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37718489

RESUMO

Despite decades of effort, the preservation of complex organs for transplantation remains a significant barrier that exacerbates the organ shortage crisis. Progress in organ preservation research is significantly hindered by suboptimal research tools that force investigators to sacrifice translatability over throughput. For instance, simple model systems, such as single cell monolayers or co-cultures, lack native tissue structure and functional assessment, while mammalian whole organs are complex systems with confounding variables not compatible with high-throughput experimentation. In response, diverse fields and industries have bridged this experimental gap through the development of rich and robust resources for the use of zebrafish as a model organism. Through this study, we aim to demonstrate the value zebrafish pose for the fields of solid organ preservation and transplantation, especially with respect to experimental transplantation efforts. A wide array of methods were customized and validated for preservation-specific experimentation utilizing zebrafish, including the development of assays at multiple developmental stages (larvae and adult), methods for loading and unloading preservation agents, and the development of viability scores to quantify functional outcomes. Using this platform, the largest and most comprehensive screen of cryoprotectant agents (CPAs) was performed to determine their toxicity and efficiency at preserving complex organ systems using a high subzero approach called partial freezing (i.e., storage in the frozen state at -10°C). As a result, adult zebrafish cardiac function was successfully preserved after 5 days of partial freezing storage. In combination, the methods and techniques developed have the potential to drive and accelerate research in the fields of solid organ preservation and transplantation.


Assuntos
Preservação de Órgãos , Peixe-Zebra , Animais , Bioensaio , Técnicas de Cocultura , Larva , Mamíferos
15.
Proc Natl Acad Sci U S A ; 120(32): e2115616120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494421

RESUMO

Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.


Assuntos
Preservação de Sangue , Procedimentos Analíticos em Microchip , Transfusão de Sangue/instrumentação , Transfusão de Sangue/métodos , Humanos , Preservação de Sangue/métodos , Dispositivos Lab-On-A-Chip , Eritrócitos , Aprendizado de Máquina
16.
Front Immunol ; 14: 1083339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936945

RESUMO

Megakaryocytes (MKs) are precursors to platelets, the second most abundant cells in the peripheral circulation. However, while platelets are known to participate in immune responses and play significant functions during infections, the role of MKs within the immune system remains largely unexplored. Histological studies of sepsis patients identified increased nucleated CD61+ cells (MKs) in the lungs, and CD61+ staining (likely platelets within microthrombi) in the kidneys, which correlated with the development of organ dysfunction. Detailed imaging cytometry of peripheral blood from patients with sepsis found significantly higher MK counts, which we predict would likely be misclassified by automated hematology analyzers as leukocytes. Utilizing in vitro techniques, we show that both stem cell derived MKs (SC MKs) and cells from the human megakaryoblastic leukemia cell line, Meg-01, undergo chemotaxis, interact with bacteria, and are capable of releasing chromatin webs in response to various pathogenic stimuli. Together, our observations suggest that MK cells display some basic innate immune cell behaviors and may actively respond and play functional roles in the pathophysiology of sepsis.


Assuntos
Megacariócitos , Sepse , Humanos , Megacariócitos/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Imunidade Inata , Sepse/metabolismo
17.
PLoS One ; 18(1): e0266207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36652460

RESUMO

Vascularized composite allografts (VCAs) refer to en bloc heterogenous tissue that is transplanted to restore form and function after amputation or tissue loss. Rat limb VCA has emerged as a robust translational model to study the pathophysiology of these transplants. However, these models have predominately focused on hindlimb VCAs which does not translate anatomically to upper extremity transplantation, whereas the majority of clinical VCAs are upper extremity and hand transplants. This work details our optimization of rat forelimb VCA procurement and sub-normothermic machine perfusion (SNMP) protocols, with results in comparison to hindlimb perfusion with the same perfusion modality. Results indicate that compared to hindlimbs, rat forelimbs on machine perfusion mandate lower flow rates and higher acceptable maximum pressures. Additionally, low-flow forelimbs have less cellular damage than high-flow forelimbs based on oxygen uptake, edema, potassium levels, and histology through 2 hours of machine perfusion. These results are expected to inform future upper extremity VCA preservation studies.


Assuntos
Aloenxertos Compostos , Alotransplante de Tecidos Compostos Vascularizados , Ratos , Animais , Transplante Homólogo , Membro Anterior , Perfusão/métodos , Extremidade Superior , Alotransplante de Tecidos Compostos Vascularizados/métodos
18.
J Reconstr Microsurg ; 39(5): 350-360, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35764315

RESUMO

BACKGROUND: For 50 years, static cold storage (SCS) has been the gold standard for solid organ preservation in transplantation. Although logistically convenient, this preservation method presents important constraints in terms of duration and cold ischemia-induced lesions. We aimed to develop a machine perfusion (MP) protocol for recovery of vascularized composite allografts (VCA) after static cold preservation and determine its effects in a rat limb transplantation model. METHODS: Partial hindlimbs were procured from Lewis rats and subjected to SCS in Histidine-Tryptophan-Ketoglutarate solution for 0, 12, 18, 24, and 48 hours. They were then either transplanted (Txp), subjected to subnormothermic machine perfusion (SNMP) for 3 hours with a modified Steen solution, or to SNMP + Txp. Perfusion parameters were assessed for blood gas and electrolytes measurement, and flow rate and arterial pressures were monitored continuously. Histology was assessed at the end of perfusion. For select SCS durations, graft survival and clinical outcomes after transplantation were compared between groups at 21 days. RESULTS: Transplantation of limbs preserved for 0, 12, 18, and 24-hour SCS resulted in similar survival rates at postoperative day 21. Grafts cold-stored for 48 hours presented delayed graft failure (p = 0.0032). SNMP of limbs after 12-hour SCS recovered the vascular resistance, potassium, and lactate levels to values similar to limbs that were not subjected to SCS. However, 18-hour SCS grafts developed significant edema during SNMP recovery. Transplantation of grafts that had undergone a mixed preservation method (12-hour SCS + SNMP + Txp) resulted in better clinical outcomes based on skin clinical scores at day 21 post-transplantation when compared to the SCS + Txp group (p = 0.01613). CONCLUSION: To date, VCA MP is still limited to animal models and no protocols are yet developed for graft recovery. Our study suggests that ex vivo SNMP could help increase the preservation duration and limit cold ischemia-induced injury in VCA transplantation.


Assuntos
Transplante de Fígado , Preservação de Órgãos , Animais , Ratos , Ratos Endogâmicos Lew , Preservação de Órgãos/métodos , Perfusão/métodos , Transplante de Fígado/métodos , Isquemia Fria
19.
Res Sq ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38196624

RESUMO

Organ transplantation is a life-saving procedure affecting over 100,000 people on the transplant waitlist. Ischemia reperfusion injury is a major challenge in the field as it can cause post-transplantation complications and limits the use of organs from extended criteria donors. Machine perfusion technology is used to repair organs before transplant, however, currently fails to achieve its full potential due to a lack of highly sensitive and specific assays to predict organ quality during perfusion. We developed a real-time and non-invasive method of assessing organ function and injury based on mitochondrial oxygenation using resonance Raman spectroscopy. It uses a 441 nm laser and a high-resolution spectrometer to predict the oxidation state of mitochondrial cytochromes during perfusion, which vary due to differences in storage compositions and perfusate compositions. This index of mitochondrial oxidation, or 3RMR, was found to predict organ health based on clinically utilized markers of perfusion quality, tissue metabolism, and organ injury. It also revealed differences in oxygenation with perfusates that may or may not be supplemented with packed red blood cells as oxygen carriers. This study emphasizes the need for further refinement of a reoxygenation strategy during machine perfusion that is based on a gradual recovery from storage. Thus, we present a novel platform that provides a real-time and quantitative assessment of mitochondrial health during machine perfusion of livers, which is easy to translate to the clinic.

20.
Nat Commun ; 13(1): 4008, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840553

RESUMO

The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between -4 and -6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (-10 to -15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.


Assuntos
Crioprotetores , Gelo , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Congelamento , Fígado , Perfusão/métodos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA