Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 13(4): 915-923, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36592287

RESUMO

Despite the introduction of multiple new drugs and combination therapies, conventional dexamethasone remains a cornerstone in the treatment of multiple myeloma (MM). Its application is, however, limited by frequent adverse effects of which the increased infection rate may have the strongest clinical impact. The efficacy-safety ratio of dexamethasone in MM may be increased by encapsulation in long-circulating PEG-liposomes, thereby both enhancing drug delivery to MM lesions and reducing systemic corticosteroid exposure. We evaluated the preliminary safety and feasibility of a single intravenous (i.v.) infusion of pegylated liposomal dexamethasone phosphate (Dex-PL) in heavily pretreated relapsing or progressive symptomatic MM patients within a phase I open-label non-comparative interventional trial at two dose levels. In the 7 patients that were enrolled (prior to having to close the study prematurely due to slow recruitment), Dex-PL was found to be well tolerated and, as compared to conventional dexamethasone, no new or unexpected adverse events were detected. Pharmacokinetic analysis showed high and persisting concentrations of dexamethasone in the circulation for over a week after i.v. administration, likely caused by the long-circulation half-life of the liposomes that retain dexamethasone as the inactive phosphate prodrug form, something which could significantly limit systemic exposure to the active parent drug. Thus, despite the limitations of this small first-in-man trial, Dex-PL seems safe and well tolerated without severe side effects. Follow-up studies are needed to confirm this in a larger patient cohort and to evaluate if i.v. Dex-PL can provide a safer and more efficacious dexamethasone treatment option for MM.


Assuntos
Mieloma Múltiplo , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Dexametasona/efeitos adversos , Lipossomos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/etiologia , Mieloma Múltiplo/patologia , Resultado do Tratamento
3.
PLoS Pathog ; 18(8): e1010747, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35960762

RESUMO

Selective vulnerability is an enigmatic feature of neurodegenerative diseases (NDs), whereby a widely expressed protein causes lesions in specific cell types and brain regions. Using the RiboTag method in mice, translational responses of five neural subtypes to acquired prion disease (PrD) were measured. Pre-onset and disease onset timepoints were chosen based on longitudinal electroencephalography (EEG) that revealed a gradual increase in theta power between 10- and 18-weeks after prion injection, resembling a clinical feature of human PrD. At disease onset, marked by significantly increased theta power and histopathological lesions, mice had pronounced translatome changes in all five cell types despite appearing normal. Remarkably, at a pre-onset stage, prior to EEG and neuropathological changes, we found that 1) translatomes of astrocytes indicated reduced synthesis of ribosomal and mitochondrial components, 2) glutamatergic neurons showed increased expression of cytoskeletal genes, and 3) GABAergic neurons revealed reduced expression of circadian rhythm genes. These data demonstrate that early translatome responses to neurodegeneration emerge prior to conventional markers of disease and are cell type-specific. Therapeutic strategies may need to target multiple pathways in specific populations of cells, early in disease.


Assuntos
Doenças Priônicas , Príons , Animais , Encéfalo/patologia , Eletroencefalografia , Humanos , Camundongos , Neurônios/metabolismo , Doenças Priônicas/patologia , Príons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA