Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
N Biotechnol ; 83: 133-141, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39128542

RESUMO

Polyhydroxyalkanoates (PHAs) are biopolymers produced by microorganisms under nutrient limiting conditions and in the presence of excess carbon source. PHAs have gained popularity as a sustainable alternative to traditional plastics. However, large scale production of PHAs is economically challenging due to the relatively high costs of organic carbon. Alternative options include using organisms capable of phototrophic or mixotrophic growth. This study aimed at the production of poly(3-hydroxybutyrate) P(3HB), a type of PHA, at pilot scale using the freshwater cyanobacterium Synechocystis sp. PCC6803. First, to identify optimal conditions for P(3HB) production from Synechocystis sp. PCC6803, different supplemental carbon source concentrations and salinity levels were tested at laboratory scale. The addition of 4 g/L acetate with no added NaCl led to P(3HB) accumulation of 10.7 % dry cell weight on the 28th day of cultivation. Although acetate additions were replicated in an outdoor 400 L serpentine photobioreactor, P(3HB) content was lower, implying uncontrolled conditions impact on biopolymer production efficiency. An optimized P(3HB) extraction methodology was developed to remove pigments, and the biopolymer was characterized and subjected to 3D printing (fused deposition modelling) to confirm its processability. This study thus successfully led to the large-scale production of P(3HB) using sustainable and environmentally friendly cyanobacterial fermentation.


Assuntos
Hidroxibutiratos , Poliésteres , Synechocystis , Synechocystis/metabolismo , Synechocystis/crescimento & desenvolvimento , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Poliésteres/química , Poli-Hidroxibutiratos
2.
J Funct Biomater ; 14(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36662087

RESUMO

In the last few decades Additive Manufacturing has advanced and is becoming important for biomedical applications. In this study we look at a variety of biomedical devices including, bone implants, tooth implants, osteochondral tissue repair patches, general tissue repair patches, nerve guidance conduits (NGCs) and coronary artery stents to which fused deposition modelling (FDM) can be applied. We have proposed CAD designs for these devices and employed a cost-effective 3D printer to fabricate proof-of-concept prototypes. We highlight issues with current CAD design and slicing and suggest optimisations of more complex designs targeted towards biomedical applications. We demonstrate the ability to print patient specific implants from real CT scans and reconstruct missing structures by means of mirroring and mesh mixing. A blend of Polyhydroxyalkanoates (PHAs), a family of biocompatible and bioresorbable natural polymers and Poly(L-lactic acid) (PLLA), a known bioresorbable medical polymer is used. Our characterisation of the PLA/PHA filament suggest that its tensile properties might be useful to applications such as stents, NGCs, and bone scaffolds. In addition to this, the proof-of-concept work for other applications shows that FDM is very useful for a large variety of other soft tissue applications, however other more elastomeric MCL-PHAs need to be used.

3.
Trends Mol Med ; 28(4): 331-342, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35232669

RESUMO

Polyhydroxyalkanoates (PHAs) are sustainable, versatile, biocompatible, and bioresorbable polymers that are suitable for biomedical applications. Produced via bacterial fermentation under nutrient-limiting conditions, they are uncovering a new horizon for devices in biomedical applications. A wide range of cell types including bone, cartilage, nerve, cardiac, and pancreatic cells, readily attach grow and are functional on PHAs. The tuneable physical properties and resorption rates of PHAs provide a toolbox for biomedical engineers in developing devices for hard and soft tissue engineering applications and drug delivery. The versatility of PHAs and the vast range of different PHA-based prototypes are discussed. Current in vitro, ex vivo, and in vivo development work are described and their regulatory approvals are reviewed.


Assuntos
Poli-Hidroxialcanoatos , Bactérias/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Poli-Hidroxialcanoatos/metabolismo , Poli-Hidroxialcanoatos/uso terapêutico , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA