Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38592786

RESUMO

Teucrium chamaedrys L. is a typical European-Mediterranean species of the genus Teucrium. Among the phenolic compounds belonging to phenylethanoid glycosides (PGs), teucrioside (TS) is only found in this species, and it was previously demonstrated to be produced by in vitro-elicited cell cultures at levels higher than those found in leaves. However, T. chamaedrys cell suspension extracts (Cell-Ex) and pure TS have not been investigated yet for any biological effects. In this study, we evaluated the antioxidant and anti-melanogenesis activity of both Cell-Ex and TS in B16-F10 mouse melanoma cells. The results showed that Cell-Ex inhibited the reactive oxygen species formation evoked in B16-F10 cells by tert-butyl hydroperoxide and 5 J/cm2 of UVA, as well as the melanin increase stimulated by α-MSH or 20 J/cm2 of UVA. In parallel, a TS concentration equivalent to that present in Cell-Ex recorded the same biological effect profile, suggesting the main contribution of TS to the antioxidant and anti-melanogenic properties of Cell-Ex. Both Cell-Ex and TS also modulated the melanogenesis pathway through their ability to inhibit the tyrosinase activity both in a cell-free system and in B16-F10 cells stimulated by α-MSH. These results support the potential cosmeceutical use of Cell-Ex for protection against photooxidative damage and hyperpigmentation.

2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834521

RESUMO

Osteoarthritis (OA) is described as a chronic degenerative disease characterized by the loss of articular cartilage. Senescence is a natural cellular response to stressors. Beneficial in certain conditions, the accumulation of senescent cells has been implicated in the pathophysiology of many diseases associated with aging. Recently, it has been demonstrated that mesenchymal stem/stromal cells isolated from OA patients contain many senescent cells that inhibit cartilage regeneration. However, the link between cellular senescence in MSCs and OA progression is still debated. In this study, we aim to characterize and compare synovial fluid MSCs (sf-MSCs), isolated from OA joints, with healthy sf-MSCs, investigating the senescence hallmarks and how this state could affect cartilage repair. Sf-MSCs were isolated from tibiotarsal joints of healthy and diseased horses with an established diagnosis of OA with an age ranging from 8 to 14 years. Cells were cultured in vitro and characterized for cell proliferation assay, cell cycle analysis, ROS detection assay, ultrastructure analysis, and the expression of senescent markers. To evaluate the influence of senescence on chondrogenic differentiation, OA sf-MSCs were stimulated in vitro for up to 21 days with chondrogenic factors, and the expression of chondrogenic markers was compared with healthy sf-MSCs. Our findings demonstrated the presence of senescent sf-MSCs in OA joints with impaired chondrogenic differentiation abilities, which could have a potential influence on OA progression.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Cavalos , Animais , Líquido Sinovial , Células Cultivadas , Osteoartrite/metabolismo , Senescência Celular/fisiologia , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Condrogênese
3.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765949

RESUMO

Small-cell lung cancer (SCLC) is the most aggressive lung cancer type, and is associated with smoking, low survival rate due to high vascularization, metastasis and drug resistance. Alterations in MYC family members are biomarkers of poor prognosis for a large number of SCLC. In particular, MYCN alterations define SCLC cases with immunotherapy failure. MYCN has a highly restricted pattern of expression in normal cells and is an ideal target for cancer therapy but is undruggable by traditional approaches. We propose an innovative approach to MYCN inhibition by an MYCN-specific antigene-PNA oligonucleotide (BGA002)-as a new precision medicine for MYCN-related SCLC. We found that BGA002 profoundly and specifically inhibited MYCN expression in SCLC cells, leading to cell-growth inhibition and apoptosis, while also overcoming multidrug resistance. These effects are driven by mTOR pathway block in concomitance with autophagy reactivation, thus avoiding the side effects of targeting mTOR in healthy cells. Moreover, we identified an MYCN-related SCLC gene signature comprehending CNTFR, DLX5 and TNFAIP3, that was reverted by BGA002. Finally, systemic treatment with BGA002 significantly increased survival in MYCN-amplified SCLC mouse models, including in a multidrug-resistant model in which tumor vascularization was also eliminated. These findings warrant the clinical testing of BGA002 in MYCN-related SCLC.

4.
Int J Legal Med ; 137(4): 1039-1049, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36786894

RESUMO

The most common pulmonary findings in opiate-related fatalities are congestion and oedema, as well as acute and/or chronic alveolar haemorrhage, the cause of which is thought to be a damage to the capillary endothelium related to ischemia. Human vascular mesenchymal stromal cells (vMSCs) play a fundamental role in tissue regeneration and repair after endothelial cell injury, and they express opioid receptors. The aim of this study was to assess the effect of in vitro morphine exposure on the physiological activity and maintenance of human vMSCs. vMSCs were obtained from abdominal aorta fragments collected during surgery repair and were exposed to incremental doses (0.1 mM, 0.4 mM, 0.8 mM and 1 mM) of morphine sulphate for 7 days. The effect was investigated through cell viability assessment, proliferation assay, reactive oxygen species (ROS) detection assay, senescence-associated ß-galactosidase assay, senescent-related markers (p21WAF1/CIP1 and p16INK4) and the apoptosis-related marker caspase 3. Moreover, an ultrastructural analysis by transmission electron microscopy and in vitro vascular differentiation were evaluated. Results showed a decrease of the cellular metabolic activity, a pro-oxidant and pro-senescence effect, an increase in intracellular ROS and the activation of the apoptosis signalling, as well as ultrastructural modifications and impairment of vascular differentiation after morphine treatment of vMSC. Although confirmation studies are required on real fatal opiate intoxications, the approach based on morphological and immunofluorescence methodologies may have a high potential also as a useful tool or as a complementary method in forensic pathology. The application of these techniques in the future may lead to the identification of new markers and morphological parameters useful as complementary investigations for drug-related deaths.


Assuntos
Células-Tronco Mesenquimais , Alcaloides Opiáceos , Humanos , Senescência Celular/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Alcaloides Opiáceos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Derivados da Morfina/farmacologia
5.
Theriogenology ; 177: 165-171, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710648

RESUMO

Exfoliative cytology of human amniotic fluid (AF) has been extensively studied since 1940s, but no data exist in equine species. The AF compartment represents the environment in which the foetus grows and matures, and its composition changes, reflecting foetal well-being and development. The aim of this study was to describe for the first time the morphology of equine AF cells and amniotic membrane (AM) with light microscopy (LM) and transmission electron microscopy (TEM). AF was collected at parturition within 5 min after the appearance of the AM with a 60 mL syringe from 34 mares and samples of AM were collected from a subset of 7 mares with normal pregnancy hospitalized for attended parturition. For LM observation, a sample of cytocentrifuged fresh AF was stained with May-Grünwald Giemsa and AM sections were stained with H-E. For TEM observation, AF and AM were fixed, embedded in epoxy resins, then sectioned and stained with uranyl acetate and lead citrate solutions. Nucleated and anucleated squamous cells with basophilic cytoplasm, intensely basophilic cornified cells, polymorphonuclear cells, and clusters of eosinophilic amorphous substance were observed. Cells presumably derived from tracheal epithelium and small round nucleated cells with eosinophilic cytoplasm presumably derived from amniotic or urinary epithelium were occasionally found. Lamellar body-like structures (LBs) were present in some epithelial cells. In AM, epithelial, basal and mesenchymal layers were clearly visible with both techniques as previously described. Epithelial cells had several cytoplasmic vacuolization and microvilli were present on apical surface. The connective tissue presented fibroblasts, mesenchymal and rare polymorphonuclear cells, surrounded by abundant extracellular matrix, with distribution of collagen fibres. This is the first report about equine amniotic compartment description by LM and TEM. As recently reported in human medicine, the AM could be a second potential source of pulmonary surfactant, given the finding of LBs inside the cells which could have the same function as in humans. Further studies in samples collected at different gestational ages could increase the knowledge of AF cells and their modification during pregnancy, as well as a better comprehension of the role of AM as a secondary source of pulmonary surfactant in the horse. The diagnostic evaluation of AF cellular composition in high-risk pregnancies may also be investigated.


Assuntos
Âmnio , Líquido Amniótico , Animais , Células Epiteliais , Feminino , Idade Gestacional , Cavalos , Parto , Gravidez
6.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681268

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal CAG trinucleotide repeat expansion within exon 1 of the huntingtin (HTT) gene. This mutation leads to the production of mutant HTT (mHTT) protein which triggers neuronal death through several mechanisms. Here, we investigated the neuroprotective effects of esculetin (ESC), a bioactive phenolic compound, in an inducible PC12 model and a transgenic Drosophila melanogaster model of HD, both of which express mHTT fragments. ESC partially inhibited the progression of mHTT aggregation and reduced neuronal death through its ability to counteract the oxidative stress and mitochondria impairment elicited by mHTT in the PC12 model. The ability of ESC to counteract neuronal death was also confirmed in the transgenic Drosophila model. Although ESC did not modify the lifespan of the transgenic Drosophila, it still seemed to have a positive impact on the HD phenotype of this model. Based on our findings, ESC may be further studied as a potential neuroprotective agent in a rodent transgenic model of HD.

7.
Sci Rep ; 11(1): 19248, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584173

RESUMO

The discovery of the expression of opioid receptors in the skin and their role in orchestrating the process of tissue repair gave rise to questions regarding the potential effects of clinical morphine treatment in wound healing. Although short term treatment was reported to improve tissue regeneration, in vivo chronic administration was associated to an impairment of the physiological healing process and systemic fibrosis. Human mesenchymal stem cells (hMSCs) play a fundamental role in tissue regeneration. In this regard, acute morphine exposition was recently reported to impact negatively on the functional characteristics of hMSCs, but little is currently known about its long-term effects. To determine how a prolonged treatment could impair their functional characteristics, we exposed hMSCs to increasing morphine concentrations respectively for nine and eighteen days, evaluating in particular the fibrogenic potential exerted by the long-term exposition. Our results showed a time dependent cell viability decline, and conditions compatible with a cellular senescent state. Ultrastructural and protein expression analysis were indicative of increased autophagy, suggesting a relation to a detoxification activity. In addition, the enhanced transcription observed for the genes involved in the synthesis and regulation of type I collagen suggested the possibility that a prolonged morphine treatment might exert its fibrotic potential risk, even involving the hMSCs.


Assuntos
Células-Tronco Mesenquimais/efeitos dos fármacos , Morfina/toxicidade , Cicatrização/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/análise , Colágeno Tipo I/metabolismo , Fibrose , Humanos , Células-Tronco Mesenquimais/fisiologia , Cultura Primária de Células , Testes de Toxicidade Subaguda
8.
Colloids Surf B Biointerfaces ; 207: 111989, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34303114

RESUMO

Hydrogels based on short peptide molecules are interesting biomaterials with wide present and prospective use in biotechnologies. A well-known possible drawback of these materials can be their limited mechanical performance. In order to overcome this problem, we prepared Fmoc-Phe3self-assembling peptides by a biocatalytic approach, and we reinforced the hydrogel with graphene oxide nanosheets. The formulation here proposed confers to the hydrogel additional physicochemical properties without hampering peptide self-assembly. We investigated in depth the effect of nanocarbon morphology on hydrogel properties (i.e. morphology, viscoelastic properties, stiffness, resistance to an applied stress). In view of further developments towards possible clinical applications, we have preliminarily tested the biocompatibility of the composites. Our results showed that the innovative hydrogel composite formulation based on FmocPhe3 and GO is a biomaterial with improved mechanical properties that appears suitable for the development of biotechnological applications.


Assuntos
Grafite , Hidrogéis , Peptídeos , Estudos Prospectivos
9.
Mech Ageing Dev ; 197: 111515, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34062172

RESUMO

Cellular senescence is a hallmark of ageing and it plays a key role in the development of age-related diseases. Abdominal aortic aneurysm (AAA) is an age related degenerative vascular disorder, characterized by a progressive dilatation of the vascular wall and high risk of rupture over time. Nowadays, no pharmacological therapies are available and the understanding of the molecular mechanisms that lead to AAA onset and development are poorly defined. In this study we investigated the cellular features of senescence in vascular mesenchymal stromal cells, isolated from pathological (AAA - MSCs) and healthy (h - MSCs) segments of human abdominal aorta and their implication in impairing the vascular repair ability of MSCs. Cell proliferation, ROS production, cell surface area, the expression of cyclin dependent kinase inhibitors p21CIP1 and p16INK4a, the activation of the DNA damage response and a dysregulated autophagy showed a senescent state in AAA - MSCs compared to h-MSCs. Moreover, a reduced ability to differentiate toward endothelial cells was observed in AAA - MSCs. All these data suggest that the accumulation of senescent vascular MSCs over time impairs their remodeling ability during ageing. This condition could support the onset and development of AAA.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Proliferação de Células , Senescência Celular , Células-Tronco Mesenquimais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Masculino
10.
Cell Mol Life Sci ; 78(6): 2781-2795, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33034697

RESUMO

Autosomal-dominant leukodystrophy (ADLD) is a rare fatal neurodegenerative disorder with overexpression of the nuclear lamina component, Lamin B1 due to LMNB1 gene duplication or deletions upstream of the gene. The molecular mechanisms responsible for driving the onset and development of this pathology are not clear yet. Vacuolar demyelination seems to be one of the most significant histopathological observations of ADLD. Considering the role of oligodendrocytes, astrocytes, and leukemia inhibitory factor (LIF)-activated signaling pathways in the myelination processes, this work aims to analyze the specific alterations in different cell populations from patients with LMNB1 duplications and engineered cellular models overexpressing Lamin B1 protein. Our results point out, for the first time, that astrocytes may be pivotal in the evolution of the disease. Indeed, cells from ADLD patients and astrocytes overexpressing LMNB1 show severe ultrastructural nuclear alterations, not present in oligodendrocytes overexpressing LMNB1. Moreover, the accumulation of Lamin B1 in astrocytes induces a reduction in LIF and in LIF-Receptor (LIF-R) levels with a consequential decrease in LIF secretion. Therefore, in both our cellular models, Jak/Stat3 and PI3K/Akt axes, downstream of LIF/LIF-R, are downregulated. Significantly, the administration of exogenous LIF can partially reverse the toxic effects induced by Lamin B1 accumulation with differences between astrocytes and oligodendrocytes, highlighting that LMNB1 overexpression drastically affects astrocytic function reducing their fundamental support to oligodendrocytes in the myelination process. In addition, inflammation has also been investigated, showing an increased activation in ADLD patients' cells.


Assuntos
Astrócitos/metabolismo , Doenças Desmielinizantes/patologia , Lamina Tipo B/metabolismo , Transdução de Sinais , Astrócitos/citologia , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Mediadores da Inflamação/metabolismo , Lamina Tipo B/genética , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Receptores de OSM-LIF/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-32258004

RESUMO

Amniotic membrane (AM) is considered an important medical device with many applications in regenerative medicine. The therapeutic properties of AM are due to its resistant extracellular matrix and to the large number of bioactive molecules released by its cells. An important goal that still remains to be achieved is the identification of cultural and preservation protocols able to maintain in time the membrane morphology and the biological properties of its cells. Recently, our research group demonstrated that progesterone (P4) is crucial in preventing the loss of the epithelial phenotype of amniotic epithelial cells in vitro. Followed by this premise, it has been evaluated whether P4 may also affect AM properties in a short-term culture. Results confirm that P4 preserves AM integrity and architecture with respect to untreated AM, which showed alterations in morphology. Transmission electron microscopy (TEM) analyses demonstrate that P4 also maintains unaltered cell-cell junctions, nuclear status, and intracellular organelles. On the contrary, an untreated AM experienced an extensive cell death and a strong reduction of immunomodulatory properties, measured in terms of anti-inflammatory cytokine expression and secretion. Overall, these results could open to new strategies to ameliorate the protocols for cryopreservation and tissue culture, which represent preliminary stages of AM application in regenerative medicine.

12.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744123

RESUMO

Inflammatory bowel diseases (IBDs) are chronic and relapsing immune disorders that result, or possibly originate, from epithelial barrier defects. Intestinal organoids are a new reliable tool to investigate epithelial response in models of chronic inflammation. We produced organoids from the ulcerative colitis murine model Winnie to explore if the chronic inflammatory features observed in the parental intestine were preserved by the organoids. Furthermore, we investigated if quercetin administration to in vitro cultured organoids could suppress LPS-induced inflammation in wild-type organoids (WT-organoids) and spontaneous inflammation in ulcerative colitis organoids (UC-organoids). Our data demonstrate that small intestinal organoids obtained from Winnie mice retain the chronic intestinal inflammatory features characteristic of the parental tissue. Quercetin administration was able to suppress inflammation both in UC-organoids and in LPS-treated WT-organoids. Altogether, our data demonstrate that UC-organoids are a reliable experimental system for investigating chronic intestinal inflammation and pharmacological responses.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Quercetina/farmacologia , Animais , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestrutura , Lipocalina-2/genética , Lipocalina-2/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Inibidor Secretado de Peptidases Leucocitárias/genética , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Cancer Res ; 79(24): 6166-6177, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615807

RESUMO

Approximately half of high-risk neuroblastoma is characterized by MYCN amplification. N-Myc promotes tumor progression by inducing cell growth and inhibiting differentiation. MYCN has also been shown to play an active role in mitochondrial metabolism, but this relationship is not well understood. Although N-Myc is a known driver of the disease, it remains a target for which no therapeutic drug exists. Here, we evaluated a novel MYCN-specific antigene PNA oligonucleotide (BGA002) in MYCN-amplified (MNA) or MYCN-expressing neuroblastoma and investigated the mechanism of its antitumor activity. MYCN mRNA and cell viability were reduced in a broad set of neuroblastoma cell lines following BGA002 treatment. Furthermore, BGA002 decreased N-Myc protein levels and apoptosis in MNA neuroblastoma. Analysis of gene expression data from patients with neuroblastoma revealed that MYCN was associated with increased reactive oxygen species (ROS), downregulated mitophagy, and poor prognosis. Inhibition of MYCN caused profound mitochondrial damage in MNA neuroblastoma cells through downregulation of the mitochondrial molecular chaperone TRAP1, which subsequently increased ROS. Correspondingly, inhibition of MYCN reactivated mitophagy. Systemic administration of BGA002 downregulated N-Myc and TRAP1, with a concomitant decrease in MNA neuroblastoma xenograft tumor weight. In conclusion, this study highlights the role of N-Myc in blocking mitophagy in neuroblastoma and in conferring protection to ROS in mitochondria through upregulation of TRAP1. BGA002 is a potently improved MYCN-specific antigene oligonucleotide that reverts N-Myc-dysregulated mitochondrial pathways, leading to loss of the protective effect of N-Myc against mitochondrial ROS. SIGNIFICANCE: A second generation antigene peptide oligonucleotide targeting MYCN induces mitochondrial damage and inhibits growth of MYCN-amplified neuroblastoma cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/patologia , Ácidos Nucleicos Peptídicos/farmacologia , Adolescente , Adulto , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/mortalidade , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/uso terapêutico , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
14.
Curr Drug Deliv ; 16(9): 807-817, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31577206

RESUMO

OBJECTIVES: This study investigated the antitumor effect of a new nanomicellar complex obtained by combining the antitumor agent fenretinide with a quaternary amphiphilic amine RC16+ also endowed with antitumor activity. METHODS: The complex (Fen-RC16+) strongly improved the aqueous solubility of fenretinide (from 1,71 ± 0.08 µg/ml, pure fenretinide to 1500 ± 164 µg /ml, Fen-RC16+ complex) and provided a cytotoxic effect on SH-SY5Y neuroblastoma cell lines resulting from the intrinsic activity of both the complex components. Moreover, the mean size of the nanomicellar complex (ranging from 20 ± 1.97 nm to 40 ± 3.05 nm) was suitable for accumulation to the tumor site by the enhanced permeability and retention effect and the positive charge provided by the quaternary RC16+ induced adsorption of the complex on the tumor cell surface improving the intracellular concentration of fenretinide. RESULTS: All these characteristics made the Fen-RC16+ complex a multitasking system for antitumor therapy. CONCLUSION: Indeed its in vivo activity, evaluated on SH-SY5Y xenografts, was strong, and the tumor growth did not resume after the treatment withdrawal.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Fenretinida/administração & dosagem , Nanoestruturas/administração & dosagem , Compostos de Amônio Quaternário/administração & dosagem , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Fenretinida/química , Humanos , Camundongos Nus , Micelas , Neoplasias/tratamento farmacológico , Compostos de Amônio Quaternário/química
15.
Cells ; 8(10)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547126

RESUMO

Osteoarthritis is a degenerative disease that strongly correlates with age and promotes the breakdown of joint cartilage and subchondral bone. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stromal cells (MSCs) isolated from adult tissues. It seems that MSCs derived from synovial joint tissues exhibit superior chondrogenic ability, but their unclear distribution and low frequency actually limit their clinical application. To date, the influence of aging on synovial joint derived MSCs' biological characteristics and differentiation abilities remains unknown, and a full understanding of the mechanisms involved in cellular aging is lacking. The aim of this study was therefore to investigate the presence of age-related alterations in synovial fluid MSCs and their influence on the potential ability of MSCs to differentiate toward chondrogenic phenotypes. Synovial fluid MSCs, isolated from healthy equine donors from 3 to 40 years old, were cultured in vitro and stimulated towards chondrogenic differentiation for up to 21 days. An equine model was chosen due to the high degree of similarity of the anatomy of the knee joint to the human knee joint and as spontaneous disorders develop that are clinically relevant to similar human disorders. The results showed a reduction in cell proliferation correlated with age and the presence of age-related tetraploid cells. Ultrastructural analysis demonstrated the presence of morphological features correlated with aging such as endoplasmic reticulum stress, autophagy, and mitophagy. Alcian blue assay and real-time PCR data showed a reduction of efficiency in the chondrogenic differentiation of aged synovial fluid MSCs compared to young MSCs. All these data highlighted the influence of aging on MSCs' characteristics and ability to differentiate towards chondrogenic differentiation and emphasize the importance of considering age-related alterations of MSCs in clinical applications.


Assuntos
Envelhecimento/patologia , Diferenciação Celular , Condrócitos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/patologia , Envelhecimento/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Senescência Celular/fisiologia , Condrócitos/patologia , Condrogênese/fisiologia , Modelos Animais de Doenças , Feminino , Cavalos , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Osteoartrite/fisiopatologia , Líquido Sinovial/citologia
16.
Clin Sci (Lond) ; 133(16): 1813-1824, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31413206

RESUMO

Purpose: To shed light on the idea that mesenchymal stem/stromal cells (MSCs) recruited in synovium (SM) (i.e. Synovium-Derived Stromal Cells, SDSCs) could be involved in Osteoarthritis (OA) pathophysiology. Attention was also paid to a further stromal cell type with a peculiar ultrastructure called telocytes (TCs), whose role is far from clarified. Methods: In the present in vitro study, we compared SDSCs isolated from healthy and OA subjects in terms of phenotype, morphology and differentiation potential as well as in their capability to activate normal Peripheral Blood Mononuclear Cells (PBMCs). Histological, immunohistochemical and ultrastructural analyses were integrated by qRT-PCR and functional resorbing assays. Results: Our data demonstrated that both SDSC populations stimulated the formation of osteoclasts from PBMCs: the osteoclast-like cells generated by healthy-SDSCs via transwell co-cultures were inactive, while OA-derived SDSCs have a much greater effectiveness. Moreover, the presence of TCs was more evident in cultures obtained from OA subjects and suggests a possible involvement of these cells in OA. Conclusions: Osteoclastogenic differentiation capability of PBMCs from OA subjects, also induced by B synoviocytes has been already documented. Here we hypothesized that SDSCs, generally considered for their regenerative potential in cartilage lesions, have also a role in the onset/maintenance of OA. Clinical relevance: Our observations may represent an interesting opportunity for the development of a holistic approach for OA treatment, that considers the multifaceted capability of MSCs in relation to the environment.


Assuntos
Osteoartrite/etiologia , Osteogênese , Células Estromais/fisiologia , Membrana Sinovial/citologia , Idoso de 80 Anos ou mais , Diferenciação Celular , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Osteogênese/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/ultraestrutura , Membrana Sinovial/fisiopatologia , Telócitos/fisiologia
17.
Biogerontology ; 19(5): 401-414, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30101381

RESUMO

Senescence can impair the therapeutic potential of stem cells. In this study, senescence-associated morphofunctional changes in periosteum-derived progenitor cells (PDPCs) from old and young individuals were investigated by combining cytofluorimetry, immunohistochemistry, and transmission electron microscopy. Cell cycle analysis demonstrated a large number of G0/G1 phase cells in PDPCs from old subjects and a progressive accumulation of G0/G1 cells during passaging in cultures from young subjects. Cytofluorimetry documented significant changes in light scattering parameters and closely correlated with the ultrastructural features, especially changes in mitochondrial shape and autophagy, which are consistent with the mitochondrial-lysosomal axis theory of ageing. The combined morphological, biofunctional, and ultrastructural approach enhanced the flow cytometric study of PDPC ageing. We speculate that impaired autophagy, documented in replicative senescent and old PDPCs, reflect a switch from quiescence to senescence. Its demonstration in a tissue with limited turnover-like the cambium layer of the periosteum, where reversible quiescence is the normal stem cell state throughout life-adds a new piece to the regenerative medicine jigsaw in an ageing society.


Assuntos
Autofagia , Senescência Celular/fisiologia , Células-Tronco Mesenquimais , Periósteo/patologia , Adulto , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Mesenquimais/ultraestrutura , Microscopia Eletrônica de Transmissão
18.
Stem Cells Int ; 2018: 3237253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731777

RESUMO

Adult stem cells are a promising cell source for cartilage regeneration. They resided in a special microenvironment known as the stem-cell niche, characterized by the presence of low oxygen concentration. Cobalt chloride (CoCl2) imitates hypoxia in vitro by stabilizing hypoxia-inducible factor-alpha (HIF-1α), which is the master regulator in the cellular adaptive response to hypoxia. In this study, the influence of CoCl2 on the chondrogenic potential of human MSCs, isolated from dental pulp, umbilical cord, and adipose tissue, was investigated. Cells were treated with concentrations of CoCl2 ranging from 50 to 400 µM. Cell viability, HIF-1α protein synthesis, and the expression of the chondrogenic markers were analyzed. The results showed that the CoCl2 supplementation had no effect on cell viability, while the upregulation of chondrogenic markers such as SOX9, COL2A1, VCAN, and ACAN was dependent on the cellular source. This study shows that hypoxia, induced by CoCl2 treatment, can differently influence the behavior of MSCs, isolated from different sources, in their chondrogenic potential. These findings should be taken into consideration in the treatment of cartilage repair and regeneration based on stem cell therapies.

19.
J Anat ; 232(6): 1031-1037, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29504141

RESUMO

Estimating the post mortem interval (PMI) is still a crucial step in Forensic Pathology. Although several methods are available for assessing the PMI, a precise estimation is still quite unreliable and can be inaccurate. The present study aimed to investigate the immunohistochemical distribution and mRNA expression of hypoxia inducible factor (HIF-1α) in post mortem gingival tissues to establish a correlation between the presence of HIF-1α and the time since death, with the final goal of achieving a more accurate PMI estimation. Samples of gingival tissues were obtained from 10 cadavers at different PMIs (1-3 days, 4-5 days and 8-9 days), and were processed for immunohistochemistry and quantitative reverse transcription-polymerase chain reaction. The results showed a time-dependent correlation of HIF-1α protein and its mRNA with different times since death, which suggests that HIF-1α is a potential marker for PMI estimation. The results showed a high HIF-1α protein signal that was mainly localized in the stratum basale of the oral mucosa in samples collected at a short PMI (1-3 days). It gradually decreased in samples collected at a medium PMI (4-5 days), but it was not detected in samples collected at a long PMI (8-9 days). These results are in agreement with the mRNA data. These data indicate an interesting potential utility of Forensic Anatomy-based techniques, such as immunohistochemistry, as important complementary tools to be used in forensic investigations.


Assuntos
Autopsia/métodos , Biomarcadores/análise , Patologia Legal/métodos , Gengiva/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/análise , Humanos , RNA Mensageiro/análise
20.
Stem Cell Rev Rep ; 14(4): 574-584, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29508214

RESUMO

Wharton's jelly (WJ) is an important source of mesenchymal stem cells (MSCs) both in human and other animals. The aim of this study was to compare human and equine WJMSCs. Human and equine WJMSCs were isolated and cultured using the same protocols and culture media. Cells were characterized by analysing morphology, growth rate, migration and adhesion capability, immunophenotype, differentiation potential and ultrastructure. Results showed that human and equine WJMSCs have similar ultrastructural details connected with intense synthetic and metabolic activity, but differ in growth, migration, adhesion capability and differentiation potential. In fact, at the scratch assay and transwell migration assay, the migration ability of human WJMSCs was higher (P < 0.05) than that of equine cells, while the volume of spheroids obtained after 48 h of culture in hanging drop was larger than the volume of equine ones (P < 0.05), demonstrating a lower cell adhesion ability. This can also revealed in the lower doubling time of equine cells (3.5 ± 2.4 days) as compared to human (6.5 ± 4.3 days) (P < 0.05), and subsequently in the higher number of cell doubling after 44 days of culture observed for the equine (20.3 ± 1.7) as compared to human cells (8.7 ± 2.4) (P < 0.05), and to the higher (P < 0.05) ability to form fibroblast colonies at P3. Even if in both species tri-lineage differentiation was achieved, equine cells showed an higher chondrogenic and osteogenic differentiation ability (P < 0.05). Our findings indicate that, although the ultrastructure demonstrated a staminal phenotype in human and equine WJMSCs, they showed different properties reflecting the different sources of MSCs.


Assuntos
Diferenciação Celular , Movimento Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Geleia de Wharton/citologia , Animais , Adesão Celular , Células Cultivadas , Condrogênese , Cavalos , Humanos , Células-Tronco Mesenquimais/ultraestrutura , Microscopia Eletrônica de Transmissão , Osteogênese , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA