Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38410434

RESUMO

Little is known about IL-17 expression in psoriasis and the actual cellular source of IL-17 remains incompletely defined. We show that high numbers of IL-17 + mast cells persisted in resolved lesions after treatment (anti-IL-17A, anti-IL-23, UVB or topical dithranol) and correlated inversely with the time span in remission. IL-17 + mast cells were found in T cell-rich areas and often close to resident memory T cells (Trm) in active psoriasis and resolved lesional skin. Digital cytometry by deconvolution of RNA-seq data showed that activated mast cells were increased in psoriatic skin, while resting mast cells were almost absent and both returned to normal levels after treatment. When primary human skin mast cells were stimulated with T cell cytokines (TNFα, IL-22 and IFNγ), they responded by releasing more IL-17A, as measured by ELISA. In situ mRNA detection using padlock probes specific for transcript variants of IL17A, IL17F, and RORC (encoding the Th17 transcription factor RORγt) revealed positive mRNA signals for IL17A, IL17F, and RORCin tryptase + cells, demonstrating that mast cells have the transcriptional machinery to actively produce IL-17. Mast cells thus belong to the center of the IL-23/IL-17 axis and high numbers of IL-17 + mast cells predict an earlier disease recurrence.

2.
Front Immunol ; 14: 1040493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153601

RESUMO

Background: Recent in vitro studies strongly implicated mast cell-derived proteases as regulators of IL-33 activity by enzymatic cleavage in its central domain. A better understanding of the role of mast cell proteases on IL-33 activity in vivo is needed. We aimed to compare the expression of mast cell proteases in C57BL/6 and BALB/c mice, their role in the cleavage of IL-33 cytokine, and their contribution to allergic airway inflammation. Results: In vitro, full-length IL-33 protein was efficiently degraded by mast cell supernatants of BALB/c mice in contrast to the mast cell supernatants from C57BL/6 mice. RNAseq analysis indicated major differences in the gene expression profiles of bone marrow-derived mast cells from C57BL/6 and BALB/c mice. In Alternaria alternata (Alt) - treated C57BL/6 mice the full-length form of IL-33 was mainly present, while in BALB/c mice, the processed shorter form of IL-33 was more prominent. The observed cleavage pattern of IL-33 was associated with a nearly complete lack of mast cells and their proteases in the lungs of C57BL/6 mice. While most inflammatory cells were similarly increased in Alt-treated C57BL/6 and BALB/c mice, C57BL/6 mice had significantly more eosinophils in the bronchoalveolar lavage fluid and IL-5 protein levels in their lungs than BALB/c mice. Conclusion: Our study demonstrates that lung mast cells differ in number and protease content between the two tested mouse strains and could affect the processing of IL-33 and inflammatory outcome of Alt -induced airway inflammation. We suggest that mast cells and their proteases play a regulatory role in IL-33-induced lung inflammation by limiting its proinflammatory effect via the IL-33/ST2 signaling pathway.


Assuntos
Interleucina-33 , Peptídeo Hidrolases , Animais , Camundongos , Interleucina-33/metabolismo , Peptídeo Hidrolases/metabolismo , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Endopeptidases/metabolismo
3.
EMBO Mol Med ; 14(12): e15200, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36341492

RESUMO

Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.


Assuntos
Linfoma Cutâneo de Células T , Quinases Ativadas por p21 , Animais , Camundongos , Genômica , Xenoenxertos , Linfoma Cutâneo de Células T/tratamento farmacológico
4.
J Allergy Clin Immunol ; 148(3): 889-894, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33667475

RESUMO

BACKGROUND: Mastocytosis encompasses a heterogeneous group of disorders characterized by accumulation of clonal mast cells (MCs) in the skin and/or internal organs. Patients typically present with a broad variety of recurrent mediator-related clinical symptoms, including severe anaphylaxis. However, not all patients with mastocytosis experience anaphylactic reactions. OBJECTIVE: We sought to identify disease-specific biomarkers in plasma that could be used to predict patients with mastocytosis with increased risk of anaphylaxis. METHODS: Nineteen patients (≥18 years) and 2 control groups (11 subjects with allergic asthma and 13 healthy volunteers without history of atopy) were recruited. In total, 248 plasma proteins were analyzed by Proximity Extension Assay using Olink Proseek Multiplex panels. RESULTS: We identified 4 novel proteins, in addition to tryptase, E-selectin, adrenomedullin, T-cell immunoglobulin, and mucin domain 1, and CUB domain-containing protein 1/CD138 to be significantly increased in patients with mastocytosis compared with both patients with asthma and healthy controls. Furthermore, we investigated whether we could discriminate between patients with mastocytosis with or without anaphylaxis. In addition to tryptase, we identified 3 novel proteins, that is, allergin-1, pregnancy-associated plasma protein-A, and galectin-3, with significantly different levels in patients with mastocytosis with anaphylaxis compared with those without anaphylaxis. CONCLUSIONS: Newly identified proteomic biomarkers may be used to predict patients with mastocytosis with increased risk of anaphylaxis.


Assuntos
Anafilaxia/etiologia , Proteínas Sanguíneas/análise , Mastocitose/sangue , Adulto , Idoso , Biomarcadores/sangue , Feminino , Humanos , Masculino , Mastocitose/complicações , Mastocitose/diagnóstico , Pessoa de Meia-Idade , Proteômica , Risco , Adulto Jovem
5.
Front Immunol ; 11: 582044, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072128

RESUMO

Staphylococcus aureus (S. aureus) can secrete a broad range of virulence factors, among which staphylococcal serine protease-like proteins (Spls) have been identified as bacterial allergens. The S. aureus allergen serine protease-like protein D (SplD) induces allergic asthma in C57BL/6J mice through the IL-33/ST2 signaling axis. Analysis of C57BL/6J, C57BL/6N, CBA, DBA/2, and BALB/c mice treated with intratracheal applications of SplD allowed us to identify a frameshift mutation in the serine (or cysteine) peptidase inhibitor, clade A, and member 3I (Serpina3i) causing a truncated form of SERPINA3I in BALB/c, CBA, and DBA/2 mice. IL-33 is a key mediator of SplD-induced immunity and can be processed by proteases leading to its activation or degradation. Full-length SERPINA3I inhibits IL-33 degradation in vivo in the lungs of SplD-treated BALB/c mice and in vitro by direct inhibition of mMCP-4. Collectively, our results establish SERPINA3I as a regulator of IL-33 in the lungs following exposure to the bacterial allergen SplD, and that the asthma phenotypes of mouse strains may be strongly influenced by the observed frameshift mutation in Serpina3i. The analysis of this protease-serpin interaction network might help to identify predictive biomarkers for type-2 biased airway disease in individuals colonized by S. aureus.


Assuntos
Alérgenos/imunologia , Proteínas de Bactérias/imunologia , Interleucina-33/imunologia , Serina Proteases/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Asma/imunologia , Feminino , Mutação da Fase de Leitura/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Peptídeo Hidrolases/imunologia , Serina Endopeptidases/imunologia , Serpinas/imunologia
6.
Trends Mol Med ; 25(8): 696-707, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176612

RESUMO

Staphylococcus aureus persistently colonizes the nostrils of one-third of the population but colonizes the sinus mucosa in up to 90% of patients with nasal polyps, implying a possible role in airway disease. Recent findings give new mechanistic insights into the ability of S. aureus to trigger type 2 inflammatory responses in the upper and lower airways. This novel concept of a S. aureus-driven chronic airway inflammatory disease suggests a new understanding of disease triggers. This article reviews the role of S. aureus in chronic inflammatory airway diseases and discusses possible therapeutic approaches to target S. aureus.


Assuntos
Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Asma/complicações , Asma/epidemiologia , Asma/etiologia , Bacteriófagos/fisiologia , Suscetibilidade a Doenças/imunologia , Humanos , Imunização , Imunoglobulina E/imunologia , Fagocitose/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/virologia , Nanomedicina Teranóstica , Virulência
7.
Allergy ; 74(11): 2077-2086, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30888697

RESUMO

Staphylococcus aureus is being recognized as a major cofactor in atopic diseases such as atopic dermatitis, chronic rhinosinusitis with nasal polyps, and asthma. The understanding of the relationship between S aureus virulence factors and the immune system is continuously improving. Although the precise mechanism of the host's immune response adaptation to the variable secretion profile of S aureus strains continues to be a matter of debate, an increasing number of studies have reported on central effects of S aureus secretome in allergy. In this review, we discuss how colonization of S aureus modulates the innate and adaptive immune response, thereby predisposing the organism to allergic sensitization and disrupting immune tolerance in the airways of patients with asthma and chronic rhinosinusitis with nasal polyps. Next, we provide a critical overview of novel concepts dealing with S aureus in the initiation and persistence of chronic rhinosinusitis with nasal polyps and asthma. The role of the S aureus serine protease-like proteins in the initiation of a type 2 response and the contribution of the IL-33/ST2 signaling axis in allergic responses induced by bacterial allergens are discussed.


Assuntos
Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Peptídeo Hidrolases , Inibidores de Proteases , Alérgenos/imunologia , Animais , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Exposição Ambiental , Ativação Enzimática , Fungos/imunologia , Humanos , Interleucina-33/metabolismo , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Estações do Ano , Transdução de Sinais , Staphylococcus aureus/enzimologia , Staphylococcus aureus/imunologia
8.
Clin Exp Allergy ; 48(12): 1665-1675, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30159930

RESUMO

BACKGROUND: Clinical and experimental studies have identified a crucial role for IL-33 and its receptor ST2 in allergic asthma. Inhalation of traffic-related pollutants, such as diesel exhaust particles (DEP), facilitates the development of asthma and can cause exacerbations of asthma. However, it is unknown whether IL-33/ST2 signalling contributes to the enhancing effects of air pollutants on allergic airway responses. OBJECTIVE: We aim to investigate the functional role of IL-33/ST2 signalling in DEP-enhanced allergic airway responses, using an established murine model. METHODS: C57BL/6J mice were exposed to saline, DEP alone, house dust mite (HDM) alone or combined DEP+HDM. To inhibit IL-33 signalling, recombinant soluble ST2 (r-sST2) was given prophylactically (ie, during the whole experimental protocol) or therapeutically (ie, at the end of the experimental protocol). Airway hyperresponsiveness and the airway inflammatory responses were assessed in bronchoalveolar lavage fluid (BALF) and lung. RESULTS: Combined exposure to DEP+HDM increased IL-33 and ST2 expression in lung, elevated inflammatory responses and bronchial hyperresponsiveness compared to saline, sole DEP or sole HDM exposure. Prophylactic interference with the IL-33/ST2 signalling pathway impaired the DEP-enhanced allergic airway inflammation in the BALF, whereas effects on lung inflammation and airway hyperresponsiveness were minimal. Treatment with r-sST2 at the end of the experimental protocol did not modulate the DEP-enhanced allergic airway responses. CONCLUSION: Our data suggest that the IL-33/ST2 pathway contributes to the onset of DEP-enhanced allergic airway inflammation.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Interleucina-33/metabolismo , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/metabolismo , Transdução de Sinais , Alérgenos/imunologia , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Material Particulado/efeitos adversos , Pyroglyphidae/imunologia , Proteínas Recombinantes/farmacologia , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo
9.
J Allergy Clin Immunol ; 141(2): 549-559.e7, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28532656

RESUMO

BACKGROUND: Chronic airway inflammatory diseases, such as chronic rhinosinusitis with nasal polyps and asthma, show increased nasal Staphylococcus aureus colonization. Staphylococcus aureus-derived serine protease-like protein (Spl) D and other closely related proteases secreted by S aureus have recently been identified as inducers of allergic asthma in human subjects and mice, but their mechanism of action is largely unknown. OBJECTIVE: We investigated the role of recombinant SplD in driving TH2-biased responses and IgE formation in a murine model of allergic asthma. METHODS: Allergic asthma was induced in C57BL/6 J wild-type mice, Toll-like receptor (TLR) 4 knockout (Tlr4-/-) mice, and recombination-activating gene (Rag2) knockout (Rag2-/-) mice by means of repeated intratracheal applications of SplD. Inflammatory parameters in the airways were assessed by means of flow cytometry, ELISA, Luminex, and immunohistochemistry. Serum SplD-specific IgE levels were analyzed by using ELISA. RESULTS: We observed that repeated intratracheal exposure to SplD led to IL-33 and eotaxin production, eosinophilia, bronchial hyperreactivity, and goblet cell hyperplasia in the airways. Blocking IL-33 activity with a soluble ST2 receptor significantly decreased the numbers of eosinophils, IL-13+ type 2 innate lymphoid cells and IL-13+CD4+ T cells and IL-5 and IL-13 production by lymph node cells but had no effect on IgE production. SplD-induced airway inflammation and IgE production were largely dependent on the presence of the functional adaptive immune system and independent of TLR4 signaling. CONCLUSION: The S aureus-derived protein SplD is a potent allergen of S aureus and induces a TH2-biased inflammatory response in the airways in an IL-33-dependent but TRL4-independent manner. The soluble ST2 receptor could be an efficient strategy to interfere with SplD-induced TH2 inflammation but does not prevent the allergic sensitization.


Assuntos
Asma/imunologia , Proteínas de Bactérias/toxicidade , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Serina Proteases/toxicidade , Staphylococcus aureus/imunologia , Animais , Asma/induzido quimicamente , Asma/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Modelos Animais de Doenças , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Staphylococcus aureus/patogenicidade , Células Th2/imunologia , Células Th2/patologia
10.
J Allergy Clin Immunol ; 139(2): 492-500.e8, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27315768

RESUMO

BACKGROUND: A substantial subgroup of asthmatic patients have "nonallergic" or idiopathic asthma, which often takes a severe course and is difficult to treat. The cause might be allergic reactions to the gram-positive pathogen Staphylococcus aureus, a frequent colonizer of the upper airways. However, the driving allergens of S aureus have remained elusive. OBJECTIVE: We sought to search for potentially allergenic S aureus proteins and characterize the immune response directed against them. METHODS: S aureus extracellular proteins targeted by human serum IgG4 were identified by means of immunoblotting to screen for potential bacterial allergens. Candidate antigens were expressed as recombinant proteins and used to analyze the established cellular and humoral immune responses in healthy adults and asthmatic patients. The ability to induce a type 2 immune response in vivo was tested in a mouse asthma model. RESULTS: We identified staphylococcal serine protease-like proteins (Spls) as dominant IgG4-binding S aureus proteins. SplA through SplF are extracellular proteases of unknown function expressed by S aureus in vivo. Spls elicited IgE antibody responses in most asthmatic patients. In healthy S aureus carriers and noncarriers, peripheral blood T cells elaborated TH2 cytokines after stimulation with Spls, as is typical for allergens. In contrast, TH1/TH17 cytokines, which dominated the response to S aureus α-hemolysin, were of low concentration or absent. In mice inhalation of SplD without adjuvant induced lung inflammation characterized by TH2 cytokines and eosinophil infiltration. CONCLUSION: We identify Spls as triggering allergens released by S aureus, opening prospects for diagnosis and causal therapy of asthma.


Assuntos
Alérgenos/metabolismo , Asma/imunologia , Proteínas de Bactérias/metabolismo , Hipersensibilidade/imunologia , Serina Proteases/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Células Th2/imunologia , Adulto , Idoso , Alérgenos/imunologia , Animais , Proteínas de Bactérias/imunologia , Células Cultivadas , Feminino , Humanos , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ligação Proteica , Adulto Jovem
11.
J Allergy Clin Immunol ; 139(1): 281-289.e5, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27343203

RESUMO

BACKGROUND: The low-affinity receptor for IgE, FcεRII (CD23), contributes to allergic inflammation through allergen presentation to T cells, regulation of IgE responses, and enhancement of transepithelial allergen migration. OBJECTIVE: We sought to investigate the interaction between CD23, chimeric monoclonal human IgE, and the corresponding birch pollen allergen Bet v 1 at a molecular level. METHODS: We expressed 4 CD23 variants. One variant comprised the full extracellular portion of CD23, including the stalk and head domain; 1 variant was identical with the first, except for an amino acid exchange in the stalk region abolishing the N-linked glycosylation site; and 2 variants represented the head domain, 1 complete and 1 truncated. The 4 CD23 variants were purified as monomeric and structurally folded proteins, as demonstrated by gel filtration and circular dichroism. By using a human IgE mAb, the corresponding allergen Bet v 1, and a panel of antibodies specific for peptides spanning the CD23 surface, both binding and inhibition assays and negative stain electron microscopy were performed. RESULTS: A hitherto unknown IgE-binding site was mapped on the stalk region of CD23, and the non-N-glycosylated monomeric version of CD23 was superior in IgE binding compared with glycosylated CD23. Furthermore, we demonstrated that a therapeutic anti-IgE antibody, omalizumab, which inhibits IgE binding to FcεRI, also inhibited IgE binding to CD23. CONCLUSION: Our results provide a new model for the CD23-IgE interaction. We show that the stalk region of CD23 is crucially involved in IgE binding and that the interaction can be blocked by the therapeutic anti-IgE antibody omalizumab.


Assuntos
Antígenos de Plantas/imunologia , Imunoglobulina E/imunologia , Receptores de IgE/imunologia , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Insetos , Omalizumab/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de IgE/química
12.
FEBS J ; 282(16): 3060-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25619330

RESUMO

UNLABELLED: The ability of flavoenzymes to reduce dioxygen varies greatly, and is controlled by the protein environment, which may cause either a rapid reaction (oxidases) or a sluggish reaction (dehydrogenases). Previously, a 'gatekeeper' amino acid residue was identified that controls the reactivity to dioxygen in proteins from the vanillyl alcohol oxidase superfamily of flavoenzymes. We have identified an alternative gatekeeper residue that similarly controls dioxygen reactivity in the grass pollen allergen Phl p 4, a member of this superfamily that has glucose dehydrogenase activity and the highest redox potential measured in a flavoenzyme. A substitution at the alternative gatekeeper site (I153V) transformed the enzyme into an efficient oxidase by increasing dioxygen reactivity by a factor of 60,000. An inverse exchange (V169I) in the structurally related berberine bridge enzyme (BBE) decreased its dioxygen reactivity by a factor of 500. Structural and biochemical characterization of these and additional variants showed that our model enzymes possess a cavity that binds an anion and resembles the 'oxyanion hole' in the proximity of the flavin ring. We showed also that steric control of access to this site is the most important parameter affecting dioxygen reactivity in BBE-like enzymes. Analysis of flavin-dependent oxidases from other superfamilies revealed similar structural features, suggesting that dioxygen reactivity may be governed by a common mechanistic principle. DATABASE: Structural data are available in PDB database under the accession numbers 4PVE, 4PVH, 4PVJ, 4PVK, 4PWB, 4PWC and 4PZF.


Assuntos
Oxigenases/química , Oxigenases/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Alérgenos/química , Alérgenos/genética , Alérgenos/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico/genética , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Oxigênio/metabolismo , Oxigenases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/enzimologia , Poaceae/genética , Poaceae/imunologia , Pólen/enzimologia , Pólen/genética , Pólen/imunologia , Engenharia de Proteínas , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA