Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
1.
medRxiv ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39228745

RESUMO

Diagnosis of Frontotemporal dementia (FTD) and the specific underlying neuropathologies (frontotemporal lobar degeneration; FTLD- Tau and FTLD-TDP) is challenging, and thus fluid biomarkers are needed to improve diagnostic accuracy. We used proximity extension assays to analyze 665 proteins in cerebrospinal fluid (CSF) samples from a multicenter cohort including patients with FTD (n = 189), Alzheimer's Disease dementia (AD; n = 232), and cognitively unimpaired individuals (n = 196). In a subset, FTLD neuropathology was determined based on phenotype or genotype (FTLD-Tau = 87 and FTLD-TDP = 68). Forty three proteins were differentially regulated in FTD compared to controls and AD, reflecting axon development, regulation of synapse assembly, and cell-cell adhesion mediator activity pathways. Classification analysis identified a 14- and 13-CSF protein panel that discriminated FTD from controls (AUC: 0.96) or AD (AUC: 0.91). Custom multiplex panels confirmed the highly accurate discrimination between FTD and controls (AUCs > 0.96) or AD (AUCs > 0.88) in three validation cohorts, including one with autopsy confirmation (AUCs > 0.90). Six proteins were differentially regulated between FTLD-TDP and FTLD-Tau, but no reproducible classification model could be generated (AUC: 0.80). Overall, this study introduces novel FTD-specific biomarker panels with potential use in diagnostic setting.

2.
J Neurol ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39317877

RESUMO

BACKGROUND: The proteins contactin (CNTN) 1-6 are synaptic proteins for which there is evidence that they are dysregulated in neurodegenerative dementias. Less is known about CNTN changes and differences in cerebrospinal fluid (CSF) of dementias, which can provide important information about alterations of the CNTN network and be of value for differential diagnosis. METHODS: We developed a mass spectrometry-based multiple reaction monitoring (MRM) method to simultaneously determine all six CNTNs in CSF samples using stable isotope-labeled standard peptides. The analytical performance of the method was evaluated for peptide stability, dilution linearity and precision. CNTNs were measured in 82 CSF samples from patients with Alzheimer's disease (AD, n = 19), behavioural variant frontotemporal dementia (bvFTD, n = 18), Parkinson's disease dementia/dementia with Lewy bodies (PDD/DLB, n = 18) and non-neurodegenerative controls (n = 27) and compared with core AD biomarkers. RESULTS: The MRM analysis revealed down-regulation of CNTN2 (fold change (FC) = 0.77), CNTN4 (FC = 0.75) and CNTN5 (FC = 0.67) in bvFTD and CNTN3 (FC = 0.72), CNTN4 (FC = 0.75) and CNTN5 (FC = 0.73) in PDD/DLB compared to AD. CNTN levels strongly correlated with each other in controls (r = 0.73), bvFTD (r = 0.86) and PDD/DLB (r = 0.70), but the correlation was significantly lower in AD (r = 0.41). CNTNs in AD did not show correlation even with core AD biomarkers. Combined use of CNTN1-6 levels increased diagnostic performance of AD core biomarkers. CONCLUSIONS: Our data show CNTNs differentially altered in dementias and indicate CNTN homeostasis being selectively dysregulated in AD. The combined use of CNTNs with AD core biomarkers might help to improve differential diagnosis.

3.
medRxiv ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39281728

RESUMO

Objective: The hippocampus is one of the first brain structures affected by Alzheimer's disease (AD), and its atrophy is a strong indicator of the disease. This study investigates the ability of plasma biomarkers of AD and AD-related dementias-amyloid-ß (Aß42/40), phosphorylated tau-181 (p-tau181), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP)-to predict hippocampal atrophy in adult individuals in Kinshasa, Democratic Republic of Congo (DRC). Methods: Eighty-five adult individuals (40 healthy and 45 suspected AD) over 65 years old were evaluated using the Community Screening Instrument for Dementia and Alzheimer's Questionnaire (AQ). Core AD biomarkers (Aß42/40 and p-tau181) and non-specific neurodegeneration biomarkers (NfL, GFAP) were measured in blood samples collected at the study visit. Hippocampal volumes were measured using magnetic resonance imaging (MRI). General linear regression was used to evaluate differences in biomarker concentrations by neurological status. Logistic regression models were used to create receiver operating characteristic curves and calculate areas under the curve (AUCs) with and without clinical covariates to determine the ability of biomarker concentrations to predict hippocampal atrophy. Plasma biomarkers were used either individually or in combination in the models. Results: Elevated p-tau181 was associated with left hippocampal (LH) atrophy p= 0.020). Only higher p-tau181 concentrations were significantly associated with 4.2-fold increased odds [OR=4.2 (1.5-18.4)] of hippocampal atrophy per standard deviation. The AUC of plasma biomarkers without clinical covariates to discriminate LH, RH, and total hippocampal (TH) or both hippocampi atrophy ranged between 90% to 94%, 76% to 82%, and 85% to 87%, respectively. The AUC of models including clinical covariates and AD biomarkers used in combination to discriminate LH, RH, and TH ranged between 94%-96%, 81%-84%, and 88%-90%, respectively. Conclusion: These results indicate that, consistent with studies in other settings, core AD plasma biomarkers can predict hippocampal atrophy in a population in Sub-Saharan Africa.

5.
J Neurochem ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289040

RESUMO

Glial fibrillary acidic protein (GFAP) is a well-established biomarker of reactive astrogliosis in the central nervous system because of its elevated levels following brain injury and various neurological disorders. The advent of ultra-sensitive methods for measuring low-abundant proteins has significantly enhanced our understanding of GFAP levels in the serum or plasma of patients with diverse neurological diseases. Clinical studies have demonstrated that GFAP holds promise both as a diagnostic and prognostic biomarker, including but not limited to individuals with Alzheimer's disease. GFAP exhibits diverse forms and structures, herein referred to as its proteoform complexity, encompassing conformational dynamics, isoforms and post-translational modifications (PTMs). In this review, we explore how the proteoform complexity of GFAP influences its detection, which may affect the differential diagnostic performance of GFAP in different biological fluids and can provide valuable insights into underlying biological processes. Additionally, proteoforms are often disease-specific, and our review provides suggestions and highlights areas to focus on for the development of new assays for measuring GFAP, including isoforms, PTMs, discharge mechanisms, breakdown products, higher-order species and interacting partners. By addressing the knowledge gaps highlighted in this review, we aim to support the clinical translation and interpretation of GFAP in both CSF and blood and the development of reliable, reproducible and specific prognostic and diagnostic tests. To enhance disease pathology comprehension and optimise GFAP as a biomarker, a thorough understanding of detected proteoforms in biofluids is essential.

6.
J Alzheimers Dis ; 101(3): 731-734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39240643

RESUMO

Biomarkers that accurately identify mild cognitive impairment (MCI) are of greater importance for Alzheimer's disease (AD) management and treatment. On the other hand, blood-based biomarkers are not only more practical but also less invasive than the common cerebrospinal fluid biomarkers. In their report in the Journal of Alzheimer's Disease, Wang and collaborators identified 67 upregulated and 220 downregulated long noncoding RNAs (lncRNAs). They further demonstrated that 4 of these lncRNAs could discriminate MCI from cognitively healthy individuals. Apart from their significance as potential biomarkers for MCI diagnosis, these lncRNAs can offer additional information on the cellular mechanisms of AD pathology.


Assuntos
Doença de Alzheimer , Biomarcadores , Disfunção Cognitiva , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/genética , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética
7.
Res Sq ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39108495

RESUMO

INTRODUCTION: We investigated how cerebrospinal fluid levels of synaptic proteins associate with memory function in normal cognition (CN) and mild cognitive impairment (MCI), and investigated the effect of amyloid positivity on these associations. METHODS: We included 242 CN (105(43%) abnormal amyloid), and 278 MCI individuals (183(66%) abnormal amyloid) from EMIF-AD MBD and ADNI. For 181 (EMIF-AD MBD) and 36 (ADNI) proteins with a synaptic annotation in SynGO, associations with word learning recall were analysed with linear models. RESULTS: Subsets of synaptic proteins showed lower levels with worse recall in preclinical AD (EMIF-AD MBD: 7, ADNI: 5 proteins, none overlapping), prodromal AD (EMIF-AD MBD only, 27 proteins) and non-AD MCI (EMIF-AD MBD: 1, ADNI: 7 proteins). The majority of these associations were specific to these groups. DISCUSSION: Synaptic disturbance-related memory impairment occurred very early in AD, indicating it may be relevant to develop therapies targeting the synapse early in the disease.

8.
medRxiv ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39108526

RESUMO

Introduction: Biomarkers have been essential to understanding Alzheimer's disease (AD) pathogenesis, pathophysiology, progression, and treatment effects. However, each biomarker measure is a representation of the biological target, the assay used to measure it, and the variance of the assay. Thus, biomarker measures are difficult to compare without standardization, and the units and magnitude of effect relative to the disease are difficult to appreciate, even for experts. To facilitate quantitative comparisons of AD biomarkers in the context of biologic and treatment effects, we propose a biomarker standardization approach between normal ranges and maximum abnormal AD ranges, which we refer to as CentiMarker, similar to the Centiloid approach used in PET. Methods: We developed a standardization scale that creates percentile values ranging from 0 for a normal population to 100 for the most abnormal measures across disease stages. We applied this scale to CSF and plasma biomarkers in autosomal dominant AD, assessing the distribution by estimated years from symptom onset, between biomarkers, and across cohorts. We then validated this approach in a large national sporadic AD cohort. Results: We found the CentiMarker scale provided an easily interpretable metric of disease abnormality. The biologic changes, range, and distribution of several AD fluid biomarkers including amyloid-ß, phospho-tau and other biomarkers, were comparable across disease stages in both early onset autosomal dominant and sporadic late onset AD. Discussion: The CentiMarker scale offers a robust and versatile framework for the standardized biological comparison of AD biomarkers. Its broader adoption could facilitate biomarker reporting, allowing for more informed cross-study comparisons and contributing to accelerated therapeutic development.

9.
J Alzheimers Dis ; 100(s1): S103-S114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39121126

RESUMO

Background: Synaptic dysfunction is closely associated with cognitive function in Alzheimer's disease (AD), and is present already in an early stage of the disease. Objective: Using serial cerebrospinal fluid (CSF) sampling, we aimed to investigate slopes of CSF synaptic proteins, and their relation with cognition along the AD continuum. Methods: We included subjects with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) (n = 50 amyloid-ß+ [A +], n = 50 A-) and 50 patients with AD dementia from the Amsterdam dementia cohort, with CSF at two time points (median[IQR] 2.1[1.4-2.7] years). We analyzed 17 synaptic proteins and neurofilament light (NfL). Using linear mixed models we assessed trajectories of protein levels, and associations with cognitive decline (repeated Mini-Mental State Examination). We used Cox regression models to assess predictive value of protein levels for progression to AD dementia. Results: At baseline most proteins showed increased levels in AD dementia compared to the other groups. In contrast NPTX2 levels were lower in AD dementia. Higher baseline levels of SNAP25, ß-syn, and 14-3-3 proteins were associated with faster cognitive decline (St.B[SE] -0.27[0.12] to -0.61[0.12]). Longitudinal analyses showed that SYT1 and NPTX levels decreased over time in AD dementia (st.B[SE] -0.10[0.04] to -0.15[0.05]) and SCD/MCI-A+ (St.B[SE] -0.07[0.03] to -0.12[0.03]), but not in SCD/MCI-A- (pinteraction < 0.05). Increase over time in NfL levels was associated with faster cognitive decline in AD dementia (St.B[SE] -1.75[0.58]), but not in the other groups (pinteraction < 0.05). Conclusions: CSF synaptic proteins showed different slopes over time, suggesting complex synaptic dynamics. High levels of especially SNAP-25 may have value for prediction of cognitive decline in early AD stages, while increase in NfL over time correlates better with cognitive decline in later stages.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva , Progressão da Doença , Proteínas de Neurofilamentos , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Masculino , Feminino , Idoso , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Sinapses , Proteína 25 Associada a Sinaptossoma/líquido cefalorraquidiano , Estudos de Coortes , Proteína C-Reativa
10.
Alzheimers Res Ther ; 16(1): 176, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090738

RESUMO

BACKGROUND: Digital speech assessment has potential relevance in the earliest, preclinical stages of Alzheimer's disease (AD). We evaluated the feasibility, test-retest reliability, and association with AD-related amyloid-beta (Aß) pathology of speech acoustics measured over multiple assessments in a remote setting. METHODS: Fifty cognitively unimpaired adults (Age 68 ± 6.2 years, 58% female, 46% Aß-positive) completed remote, tablet-based speech assessments (i.e., picture description, journal-prompt storytelling, verbal fluency tasks) for five days. The testing paradigm was repeated after 2-3 weeks. Acoustic speech features were automatically extracted from the voice recordings, and mean scores were calculated over the 5-day period. We assessed feasibility by adherence rates and usability ratings on the System Usability Scale (SUS) questionnaire. Test-retest reliability was examined with intraclass correlation coefficients (ICCs). We investigated the associations between acoustic features and Aß-pathology, using linear regression models, adjusted for age, sex and education. RESULTS: The speech assessment was feasible, indicated by 91.6% adherence and usability scores of 86.0 ± 9.9. High reliability (ICC ≥ 0.75) was found across averaged speech samples. Aß-positive individuals displayed a higher pause-to-word ratio in picture description (B = -0.05, p = 0.040) and journal-prompt storytelling (B = -0.07, p = 0.032) than Aß-negative individuals, although this effect lost significance after correction for multiple testing. CONCLUSION: Our findings support the feasibility and reliability of multi-day remote assessment of speech acoustics in cognitively unimpaired individuals with and without Aß-pathology, which lays the foundation for the use of speech biomarkers in the context of early AD.


Assuntos
Estudos de Viabilidade , Acústica da Fala , Humanos , Feminino , Masculino , Idoso , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Fala/fisiologia
11.
Alzheimers Dement ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096164

RESUMO

INTRODUCTION: We developed a multimarker blood test result interpretation tool for the clinical dementia practice, including phosphorylated (P-)tau181, amyloid-beta (Abeta)42/40, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). METHODS: We measured the plasma biomarkers with Simoa (n = 1199), applied LASSO regression for biomarker selection and receiver operating characteristics (ROC) analyses to determine diagnostic accuracy. We validated our findings in two independent cohorts and constructed a visualization approach. RESULTS: P-tau181, GFAP, and NfL were selected. This combination had area under the curve (AUC) = 83% to identify amyloid positivity in pre-dementia stages, AUC = 87%-89% to differentiate Alzheimer's or controls from frontotemporal dementia, AUC = 74%-76% to differentiate Alzheimer's or controls from dementia with Lewy bodies. Highly reproducible AUCs were obtained in independent cohorts. The resulting visualization tool includes UpSet plots to visualize the stand-alone biomarker results and density plots to visualize the biomarker results combined. DISCUSSION: Our multimarker blood test interpretation tool is ready for testing in real-world clinical dementia settings. HIGHLIGHTS: We developed a multimarker blood test interpretation tool for clinical dementia practice. Our interpretation tool includes plasma biomarkers P-tau, GFAP, and NfL. Our tool is particularly useful for Alzheimer's and frontotemporal dementia diagnosis.

12.
medRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39211852

RESUMO

Background: Western countries have provided reference values (RV) for Alzheimer's disease (AD) plasma biomarkers, but there are not available in Sub-Saharan African populations. Objective: We provide preliminary RV for AD and other plasma biomarkers including amyloid- ß (Aß42/40), phosphorylated tau-181 and 217 (p-tau181, p-tau217), neurofilament light (Nfl), glial fibrillary acidic protein (GFAP), interleukin 1b and 10 (IL-1b and IL-10) and tumor necrosis factor α (TNFα) in Congolese adults with and without dementia. Methods: 85 adults (40 healthy and 45 dementia) over 50 years old were included. Blood samples were provided for plasma AD biomarkers Aß42/40 and p-tau181, p-tau217; Nfl and GFAP; IL-1b and IL-10 and TNFα analyzed using SIMOA. Linear and logistic regressions were conducted to evaluate differences in biomarkers by age and gender and neurological status, and for the prediction of dementia status by each individual biomarker. RV were those that optimized sensitivity and specificity based on Youden's index. Results: In this sample of 85 adults, 40 (47%) had dementia, 38 (45.0%) were male, overall mean age was 73.2 (SD 7.6) years with 8.3 (5.4) years of education. There were no significant differences in age, gender, and education based on neurological status. Biomarker concentrations did not significantly differ by age except for p-tau181 and GFAP and did not differ by sex. Preliminary cutoffs of various plasma in pg/ml were 0.061 for Aß42/40, 4.50 for p-tau 181, 0.008 for p-tau 217, 36.5 for Nfl, 176 for GFAP, 1.16 for TNFa, 0.011 for IL-1b, and 0.38 for IL-10. All AUCs ranged between 0.64-0.74. P-tau 217 [0.74 (0.61, 0.86)] followed by GFAP [0.72 (0.61, 0.83), and Nfl [0.71 (0.60, 0.82)] had the highest AUC compared to other plasma biomarkers. Conclusions: This study provides RV which could be of preliminary utility to facilitate the screening, clinical diagnostic adjudication, classification, and prognosis of AD in Congolese adults.

13.
Alzheimers Res Ther ; 16(1): 190, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169442

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a common, complex and multifactorial disease that may require screening across multiple routes of referral to enable early detection and subsequent future implementation of tailored interventions. Blood- and eye-based biomarkers show promise as low-cost, scalable and patient-friendly tools for early AD detection given their ability to provide information on AD pathophysiological changes and manifestations in the retina, respectively. Eye clinics provide an intriguing real-world proof-of-concept setting to evaluate the performance of these potential AD screening tools given the intricate connections between the eye and brain, presumed enrichment for AD pathology in the aging population with eye disorders, and the potential for an accelerated diagnostic pathway for under-recognized patient groups. METHODS: The BeyeOMARKER study is a prospective, observational, longitudinal cohort study aiming to include individuals visiting an eye-clinic. Inclusion criteria entail being ≥ 50 years old and having no prior dementia diagnosis. Excluded eye-conditions include traumatic insults, superficial inflammation, and conditions in surrounding structures of the eye that are not engaged in vision. The BeyeOMARKER cohort (n = 700) will undergo blood collection to assess plasma p-tau217 levels and a brief cognitive screening at the eye clinic. All participants will subsequently be invited for annual longitudinal follow-up including remotely administered cognitive screening and questionnaires. The BeyeOMARKER + cohort (n = 150), consisting of 100 plasma p-tau217 positive participants and 50 matched negative controls selected from the BeyeOMARKER cohort, will additionally undergo Aß-PET and tau-PET, MRI, retinal imaging including hyperspectral imaging (primary), widefield imaging, optical coherence tomography (OCT) and OCT-Angiography (secondary), and cognitive and cortical vision assessments. RESULTS: We aim to implement the current protocol between April 2024 until March 2027. Primary outcomes include the performance of plasma p-tau217 and hyperspectral retinal imaging to detect AD pathology (using Aß- and tau-PET visual read as reference standard) and to detect cognitive decline. Initial follow-up is ~ 2 years but may be extended with additional funding. CONCLUSIONS: We envision that the BeyeOMARKER study will demonstrate the feasibility of early AD detection based on blood- and eye-based biomarkers in alternative screening settings, and will improve our understanding of the eye-brain connection. TRIAL REGISTRATION: The BeyeOMARKER study (Eudamed CIV ID: CIV-NL-23-09-044086; registration date: 19th of March 2024) is approved by the ethical review board of the Amsterdam UMC.


Assuntos
Doença de Alzheimer , Biomarcadores , Diagnóstico Precoce , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores/sangue , Estudos Prospectivos , Masculino , Feminino , Idoso , Proteínas tau/sangue , Pessoa de Meia-Idade , Estudos Longitudinais , Peptídeos beta-Amiloides/sangue , Oftalmopatias/diagnóstico , Oftalmopatias/sangue , Oftalmopatias/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Estudos de Coortes
14.
Alzheimers Dement ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193893

RESUMO

INTRODUCTION: We investigated blood DNA methylation patterns associated with 15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathophysiology, neuroinflammation, and neurodegeneration. METHODS: We assessed DNA methylation in 885 blood samples from the European Medical Information Framework for Alzheimer's Disease (EMIF-AD) study using the EPIC array. RESULTS: We identified Bonferroni-significant differential methylation associated with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 levels. A co-localization analysis showed shared genetic variants underlying YKL-40 DNA methylation and CSF protein levels, with evidence that DNA methylation mediates the association between genotype and protein levels. Weighted gene correlation network analysis identified two modules of co-methylated loci correlated with several amyloid measures and enriched in pathways associated with lipoproteins and development. DISCUSSION: We conducted the most comprehensive epigenome-wide association study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore the relationship between YKL-40 genotype, DNA methylation, and protein levels in the brain. HIGHLIGHTS: Blood DNA methylation was assessed in the EMIF-AD MBD study. Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer's disease (AD)-relevant cerebrospinal fluid (CSF) biomarker measures. Five Bonferroni-significant loci were associated with YKL-40 levels and seven with neurofilament light chain (NfL). DNA methylation in YKL-40 co-localized with previously reported genetic variation. DNA methylation potentially mediates the effect of single-nucleotide polymorphisms (SNPs) in YKL-40 on CSF protein levels.

15.
Alzheimers Dement ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193899

RESUMO

INTRODUCTION: The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection. METHODS: In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts. RESULTS: We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10-3). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia = 2.59). DISCUSSION: Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk. HIGHLIGHTS: We used whole blood DNA methylation as a surrogate for 14 dementia risk factors. Created a multivariate methylation risk score for predicting cognitive impairment. Emphasized the role of machine learning and omics data in predicting dementia. The score predicts cognitive impairment development at the population level.

16.
Neurology ; 103(3): e209605, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38986053

RESUMO

BACKGROUND AND OBJECTIVES: Cognitive decline rates in Alzheimer disease (AD) vary greatly. Disease-modifying treatments may alter cognitive decline trajectories, rendering their prediction increasingly relevant. We aimed to construct clinically applicable prediction models of cognitive decline in amyloid-positive patients with mild cognitive impairment (MCI) or mild dementia. METHODS: From the Amsterdam Dementia Cohort, we selected amyloid-positive participants with MCI or mild dementia and at least 2 longitudinal Mini-Mental State Examination (MMSE) measurements. Amyloid positivity was based on CSF AD biomarker concentrations or amyloid PET. We used linear mixed modeling to predict MMSE over time, describing trajectories using a cubic time curve and interactions between linear time and the baseline predictors age, sex, baseline MMSE, APOE ε4 dose, CSF ß-amyloid (Aß) 1-42 and pTau, and MRI total brain and hippocampal volume. Backward selection was used to reduce model complexity. These models can predict MMSE over follow-up or the time to an MMSE value. MCI and mild dementia were modeled separately. Internal 5-fold cross-validation was performed to calculate the explained variance (R2). RESULTS: In total, 961 participants were included (age 65 ± 7 years, 49% female), 310 had MCI (MMSE 26 ± 2) and 651 had mild dementia (MMSE 22 ± 4), with 4 ± 2 measurements over 2 (interquartile range 1-4) years. Cognitive decline rates increased over time for both MCI and mild dementia (model comparisons linear vs squared vs cubic time fit; p < 0.05 favoring a cubic fit). For MCI, backward selection retained age, sex, and CSF Aß1-42 and pTau concentrations as time-varying effects altering the MMSE trajectory. For mild dementia, retained time-varying effects were Aß1-42, age, APOE ε4, and baseline MMSE. R2 was 0.15 for the MCI model and 0.26 for mild dementia in internal cross-validation. A hypothetical patient with MCI, baseline MMSE 28, and CSF Aß1-42 of 925 pg/mL was predicted to reach an MMSE of 20 after 6.0 years (95% CI 5.4-6.7) and after 8.6 years with a hypothetical treatment reducing decline by 30%. DISCUSSION: We constructed models for MCI and mild dementia that predict MMSE over time. These models could inform patients about their potential cognitive trajectory and the remaining uncertainty and aid in conversations about individualized potential treatment effects.


Assuntos
Peptídeos beta-Amiloides , Disfunção Cognitiva , Demência , Fragmentos de Peptídeos , Humanos , Feminino , Masculino , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Idoso , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Demência/diagnóstico por imagem , Demência/líquido cefalorraquidiano , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Biomarcadores/líquido cefalorraquidiano , Testes de Estado Mental e Demência , Estudos de Coortes , Progressão da Doença , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
17.
Brain Commun ; 6(4): fcae162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39051027

RESUMO

The dynamic phase of preclinical Alzheimer's disease, as characterized by accumulating cortical amyloid-ß, is a window of opportunity for amyloid-ß-lowering therapies to have greater efficacy. Biomarkers that accurately predict amyloid-ß accumulation may be of critical importance for participant inclusion in secondary prevention trials and thus enhance development of early Alzheimer's disease therapies. We compared the abilities of baseline plasma pTau181, pTau217 and amyloid-ß PET load to predict future amyloid-ß accumulation in asymptomatic elderly. In this longitudinal cohort study, baseline plasma pTau181 and pTau217 were quantified using single molecule array assays in cognitively unimpaired elderly selected from the community-recruited F-PACK cohort based on the availability of baseline plasma samples and longitudinal amyloid-ß PET data (median time interval = 5 years, range 2-10 years). The predictive abilities of pTau181, pTau217 and PET-based amyloid-ß measures for PET-based amyloid-ß accumulation were investigated using receiver operating characteristic analyses, correlations and stepwise regression analyses. We included 75 F-PACK subjects (mean age = 70 years, 48% female), of which 16 were classified as amyloid-ß accumulators [median (interquartile range) Centiloid rate of change = 3.42 (1.60) Centiloids/year). Plasma pTau181 [area under the curve (95% confidence interval) = 0.72 (0.59-0.86)] distinguished amyloid-ß accumulators from non-accumulators with similar accuracy as pTau217 [area under the curve (95% confidence interval) = 0.75 (0.62-0.88) and amyloid-ß PET [area under the curve (95% confidence interval) = 0.72 (0.56-0.87)]. Plasma pTau181 and pTau217 strongly correlated with each other (r = 0.93, Pfalse discovery rate < 0.001) and, together with amyloid-ß PET, similarly correlated with amyloid-ß rate of change (r pTau181 = 0.33, r pTau217 = 0.36, r amyloid-ß PET = 0.35, all Pfalse discovery rate ≤ 0.01). Addition of plasma pTau181, plasma pTau217 or amyloid-ß PET to a linear demographic model including age, sex and APOE-ε4 carriership similarly improved the prediction of amyloid-ß accumulation (ΔAkaike information criterion ≤ 4.1). In a multimodal biomarker model including all three biomarkers, each biomarker lost their individual predictive ability. These findings indicate that plasma pTau181, plasma pTau217 and amyloid-ß PET convey overlapping information and therefore predict the dynamic phase of asymptomatic amyloid-ß accumulation with comparable performances. In clinical trial recruitment, confirmatory PET scans following blood-based prescreening might thus not provide additional value for detecting participants in these early disease stages who are destined to accumulate cortical amyloid-ß. Given the moderate performances, future studies should investigate whether integrating plasma pTau species with other factors can improve performance and thus enhance clinical and research utility.

18.
Alzheimers Dement ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970402

RESUMO

INTRODUCTION: We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS: Individuals without dementia were classified as A+ (CSF amyloid beta [Aß]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS: Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION: Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS: In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.

19.
medRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38947004

RESUMO

Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and medial temporal lobe Tau-PET signal showed similar associations with cognitive decline on a global cognitive composite test (R2 PET=0.32 vs R2 PLASMA=0.32, pdifference=0.812) and with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential selection using plasma p-tau217 and then Tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical trials in preclinical AD.

20.
Fluids Barriers CNS ; 21(1): 58, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020361

RESUMO

BACKGROUND: Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans. METHODS: We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD. RESULTS: ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways. CONCLUSIONS: Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.


Assuntos
Doença de Alzheimer , Plexo Corióideo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteômica , Plexo Corióideo/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/líquido cefalorraquidiano , Animais , Humanos , Camundongos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Proteoma/metabolismo , Masculino , Feminino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA