Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 26(10): 1792-1802, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37553981

RESUMO

Plant community productivity generally increases with biodiversity, but the strength of this relationship exhibits strong empirical variation. In meta-food-web simulations, we addressed if the spatial overlap in plants' resource access and animal space-use can explain such variability. We found that spatial overlap of plant resource access is a prerequisite for positive diversity-productivity relationships, but causes exploitative competition that can lead to competitive exclusion. Space-use of herbivores causes apparent competition among plants, resulting in negative relationships. However, space-use of larger top predators integrates sub-food webs composed of smaller species, offsetting the negative effects of exploitative and apparent competition and leading to strongly positive diversity-productivity relationships. Overall, our results show that spatial overlap of plants' resource access and animal space-use can greatly alter the strength and sign of such relationships. In particular, the scaling of animal space-use effects opens new perspectives for linking landscape processes without effects on biodiversity to productivity patterns.


Assuntos
Biodiversidade , Ecossistema , Animais , Cadeia Alimentar , Plantas , Herbivoria , Biomassa
2.
Ecol Lett ; 26(10): 1700-1713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37458203

RESUMO

Species dispersal and resource spatial flows greatly affect the dynamics of connected ecosystems. So far, research on meta-ecosystems has mainly focused on the quantitative effect of subsidy flows. Yet, resource exchanges at heterotrophic-autotrophic (e.g. aquatic-terrestrial) ecotones display a stoichiometric asymmetry that likely matters for functioning. Here, we joined ecological stoichiometry and the meta-ecosystem framework to understand how subsidy stoichiometry mediates the response of the meta-ecosystem to subsidy flows. Our model results demonstrate that resource flows between ecosystems can induce a positive spatial feedback loop, leading to higher production at the meta-ecosystem scale by relaxing local ecosystem limitations ('spatial complementarity'). Furthermore, we show that spatial flows can also have an unexpected negative impact on production when accentuating the stoichiometric mismatch between local resources and basal species needs. This study paves the way for studies on the interdependency of ecosystems at the landscape extent.


Assuntos
Ecossistema , Cadeia Alimentar , Retroalimentação
3.
Ecol Lett ; 26(7): 1200-1211, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37157944

RESUMO

Understanding species coexistence has been a central question in ecology for decades, and the notion that competing species need to differ in their ecological niche for stable coexistence has dominated. Recent theoretical and empirical work suggests differently. Species can also escape competitive exclusion by being similar, leading to clusters of species with similar traits. This theory has so far only been explored under competition. By combining mathematical and numerical analyses, we reveal that competition and predation are equally capable to promote clusters of similar species in prey-predator communities, their relative importance being modulated by resource availability. We further show that predation has a stabilizing effect on clustering patterns, making the clusters more diverse. Our results merge different ecological theories and bring new light to the emergent neutrality theory by adding the perspective of trophic interactions. These results open new perspectives to the study of trait distributions in ecological interaction networks.


Assuntos
Ecossistema , Comportamento Predatório , Animais , Análise por Conglomerados , Fenótipo , Estado Nutricional
5.
Oecologia ; 201(2): 525-536, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36692691

RESUMO

Urban areas often host exotic plant species, whether managed or spontaneous. These plants are suspected of affecting pollinator diversity and the structure of pollination networks. However, in dense cityscapes, exotic plants also provide additional flower resources during periods of scarcity, and the consequences for the seasonal dynamics of networks still need to be investigated. For two consecutive years, we monitored monthly plant-pollinator networks in 12 green spaces in Paris, France. We focused on seasonal variations in the availability and attractiveness of flower resources, comparing native and exotic plants at both the species and community levels. We also considered their respective contributions to network properties over time (specialization and nestedness). Exotic plants provided more abundant and diverse flower resources than native plants, especially from late summer on. However, native plants received more visits and attracted more pollinator species at the community level; and during certain times of the year at the species level as well. Exotic plants were involved in more generalist interactions, increasingly so over the seasons. In addition, they contributed more to network nestedness than native plants. These results show that exotic plants are major components of plant-pollinator interactions in a dense urban landscape, even though they are less attractive than natives. They constitute a core of generalist interactions that increase nestedness and can participate in the overall stability of the network. However, most exotic species were seldom visited by insects. Pollinator communities may benefit from including more native species when managing urban green spaces.


Assuntos
Ecossistema , Polinização , Animais , Estações do Ano , Plantas , Insetos , Flores
6.
Trends Ecol Evol ; 38(3): 301-312, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36437144

RESUMO

Bioenergetic approaches have been greatly influential for understanding community functioning and stability and predicting effects of environmental changes on biodiversity. These approaches use allometric relationships to establish species' trophic interactions and consumption rates and have been successfully applied to aquatic ecosystems. Terrestrial ecosystems, where body mass is less predictive of plant-consumer interactions, present inherent challenges that these models have yet to meet. Here, we discuss the processes governing terrestrial plant-consumer interactions and develop a bioenergetic framework integrating those processes. Our framework integrates bioenergetics specific to terrestrial plants and their consumers within a food web approach while also considering mutualistic interactions. Such a framework is poised to advance our understanding of terrestrial food webs and to predict their responses to environmental changes.


Assuntos
Ecossistema , Cadeia Alimentar , Biodiversidade , Metabolismo Energético
7.
Glob Chang Biol ; 29(5): 1223-1238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36461630

RESUMO

Global change encompasses many co-occurring anthropogenic drivers, which can act synergistically or antagonistically on ecological systems. Predicting how different global change drivers simultaneously contribute to observed biodiversity change is a key challenge for ecology and conservation. However, we lack the mechanistic understanding of how multiple global change drivers influence the vital rates of multiple interacting species. We propose that reaction norms, the relationships between a driver and vital rates like growth, mortality, and consumption, provide insights to the underlying mechanisms of community responses to multiple drivers. Understanding how multiple drivers interact to affect demographic rates using a reaction-norm perspective can improve our ability to make predictions of interactions at higher levels of organization-that is, community and food web. Building on the framework of consumer-resource interactions and widely studied thermal performance curves, we illustrate how joint driver impacts can be scaled up from the population to the community level. A simple proof-of-concept model demonstrates how reaction norms of vital rates predict the prevalence of driver interactions at the community level. A literature search suggests that our proposed approach is not yet used in multiple driver research. We outline how realistic response surfaces (i.e., multidimensional reaction norms) can be inferred by parametric and nonparametric approaches. Response surfaces have the potential to strengthen our understanding of how multiple drivers affect communities as well as improve our ability to predict when interactive effects emerge, two of the major challenges of ecology today.


Assuntos
Ecologia , Ecossistema , Cadeia Alimentar , Biodiversidade , Mudança Climática
8.
J Anim Ecol ; 91(9): 1842-1854, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704282

RESUMO

Pairs of plants and pollinators species sometimes consistently interact throughout time and across space. Such consistency can be interpreted as a sign of interaction fidelity, that is a consistent interaction between two species when they co-occur in the same place. But how common interaction fidelity is and what determines interaction fidelity in plant-pollinator communities remain open questions. We aim to assess how frequent is interaction fidelity between plants and their pollinators and what drives interaction fidelity across plant-pollinator communities. Using a dataset of 141 networks around the world, we quantify whether the interaction between pairs of plant and pollinator species happens more ('interaction fidelity') or less ('interaction avoidance') often than expected by chance given the structure of the networks in which they co-occur. We also explore the relationship between interaction fidelity and species' degree (i.e. number of interactions), and the taxonomy of the species involved in the interaction. Our findings reveal that most plant-pollinator interactions do not differ from random expectations, in other words show neither fidelity nor avoidance. Out of the total 44,814 co-occurring species pairs we found 7,877 unique pair interactions (18%). Only 551 (7%) of the 7,877 plant-pollinator interactions did show significant interaction fidelity, meaning that these pairs interact in a consistent and non-random way across networks. We also find that 39 (0.09%) out of 44,814 plant-pollinator pairs showed significant interaction avoidance. Our results suggest that interactions involving specialist species have a high probability to show interaction fidelity and a low probability of interaction avoidance. In addition, we find that particular associations between plant and insect orders, as for example interactions between Hymenoptera and Fabales, showed high fidelity and low avoidance. Although niche and neutral processes simultaneously influence patterns of interaction in ecological communities, our findings suggest that it is rather neutral processes that are shaping the patterns of interactions in plant-pollinator networks.


Assuntos
Magnoliopsida , Polinização , Animais , Biota , Insetos , Plantas
9.
Ecol Lett ; 24(11): 2364-2377, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34423526

RESUMO

Biodiversity-ecosystem functioning and food-web complexity-stability relationships are central to ecology. However, they remain largely untested in natural contexts. Here, we estimated the links among environmental conditions, richness, food-web structure, annual biomass and its temporal stability using a standardised monitoring dataset of 99 stream fish communities spanning from 1995 to 2018. We first revealed that both richness and average trophic level are positively related to annual biomass, with effects of similar strength. Second, we found that community stability is fostered by mean trophic level, while contrary to expectation, it is decreased by species richness. Finally, we found that environmental conditions affect both biomass and its stability mainly via effects on richness and network structure. Strikingly, the effect of species richness on community stability was mediated by population stability rather than synchrony, which contrasts with results from single trophic communities. We discuss the hypothesis that it could be a characteristic of multi-trophic communities.


Assuntos
Biodiversidade , Ecossistema , Peixes , Cadeia Alimentar , Animais , Biomassa , Ecologia
10.
Ecol Lett ; 24(10): 2088-2099, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34218505

RESUMO

Morphological and phenological traits are key determinants of the structure of mutualistic networks. Both traits create forbidden links, but phenological traits can also decouple interaction in time. While such difference likely affects the indirect effects among species and consequently network persistence, it remains overlooked. Here, using a dynamic model, we show that networks structured by phenology favour facilitation over competition within guilds of pollinators and plants, thereby increasing network persistence, while the contrary holds for networks structured by morphology. We further show that such buffering of competition by phenological traits mostly beneficiate to specialists, the most vulnerable species otherwise, which propagate the most positive effects within guilds and promote nestedness. Our results indicate that beyond trophic mismatch, phenological shifts such as those induced by climate change are likely to affect indirect effects within mutualistic assemblages, with consequences for biodiversity.


Assuntos
Polinização , Simbiose , Biodiversidade , Mudança Climática , Plantas
11.
Mol Ecol ; 30(9): 2162-2177, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33639035

RESUMO

Despite small freshwater ecosystems being biodiversity reservoirs and contributing significantly to greenhouse fluxes, their microbial communities remain largely understudied. Yet, microorganisms intervene in biogeochemical cycling and impact water quality. Because of their small size, these ecosystems are in principle more sensitive to disturbances, seasonal variation and pluri-annual climate change. However, how microbial community composition varies over space and time, and whether archaeal, bacterial and microbial eukaryote communities behave similarly remain unanswered. Here, we aim to unravel the composition and intra/interannual temporal dynamic patterns for archaea, bacteria and microbial eukaryotes in a set of small freshwater ecosystems. We monitored archaeal and bacterial community composition during 24 consecutive months in four ponds and one brook from northwestern France by 16S rRNA gene amplicon sequencing (microbial eukaryotes were previously investigated for the same systems). Unexpectedly for oxic environments, bacterial Candidate Phyla Radiation (CPR) were highly diverse and locally abundant. Our results suggest that microbial community structure is mainly driven by environmental conditions acting over space (ecosystems) and time (seasons). A low proportion of operational taxonomic units (OTUs) (<1%) was shared by the five ecosystems despite their geographical proximity (2-9 km away), making microbial communities almost unique in each ecosystem and highlighting the strong selective influence of local environmental conditions. Marked and similar seasonality patterns were observed for archaea, bacteria and microbial eukaryotes in all ecosystems despite strong turnovers of rare OTUs. Over the 2-year survey, microbial community composition varied despite relatively stable environmental parameters. This suggests that biotic associations play an important role in interannual community assembly.


Assuntos
Ecossistema , Microbiota , Archaea/genética , Biodiversidade , França , Água Doce , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
12.
Glob Chang Biol ; 27(6): 1266-1280, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33274540

RESUMO

Pollinators provide crucial ecosystem services that underpin to wild plant reproduction and yields of insect-pollinated crops. Understanding the relative impacts of anthropogenic pressures and climate on the structure of plant-pollinator interaction networks is vital considering ongoing global change and pollinator decline. Our ability to predict the consequences of global change for pollinator assemblages worldwide requires global syntheses, but these analytical approaches may be hindered by variable methods among studies that either invalidate comparisons or mask biological phenomena. Here we conducted a synthetic analysis that assesses the relative impact of anthropogenic pressures and climatic variability, and accounts for heterogeneity in sampling methodology to reveal network responses at the global scale. We analyzed an extensive dataset, comprising 295 networks over 123 locations all over the world, and reporting over 50,000 interactions between flowering plant species and their insect visitors. Our study revealed that anthropogenic pressures correlate with an increase in generalism in pollination networks while pollinator richness and taxonomic composition are more related to climatic variables with an increase in dipteran pollinator richness associated with cooler temperatures. The contrasting response of species richness and generalism of the plant-pollinator networks stresses the importance of considering interaction network structure alongside diversity in ecological monitoring. In addition, differences in sampling design explained more variation than anthropogenic pressures or climate on both pollination networks richness and generalism, highlighting the crucial need to report and incorporate sampling design in macroecological comparative studies of pollination networks. As a whole, our study reveals a potential human impact on pollination networks at a global scale. However, further research is needed to evaluate potential consequences of loss of specialist species and their unique ecological interactions and evolutionary pathways on the ecosystem pollination function at a global scale.


Assuntos
Ecossistema , Polinização , Animais , Humanos , Insetos , Pressão , Reprodução
13.
Glob Chang Biol ; 26(12): 6753-6766, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33016508

RESUMO

Global change affects species by modifying their abundance, spatial distribution, and activity period. The challenge is now to identify the respective drivers of those responses and to understand how those responses combine to affect species assemblages and ecosystem functioning. Here we correlate changes in occupancy and mean flight date of 205 wild bee species in Belgium with temporal changes in temperature trend and interannual variation, agricultural intensification, and urbanization. Over the last 70 years, bee occupancy decreased on average by 33%, most likely because of agricultural intensification, and flight period of bees advanced on average by 4 days, most likely because of interannual temperature changes. Those responses resulted in a synergistic effect because species which increased in occupancy tend to be those that have shifted their phenologies earlier in the season. This leads to an overall advancement and shortening of the pollination season by 9 and 15 days respectively, with lower species richness and abundance compared to historical pollinator assemblages, except at the early start of the season. Our results thus suggest a strong decline in pollination function and services.


Assuntos
Ecossistema , Polinização , Agricultura , Animais , Abelhas , Bélgica , Urbanização
14.
Nat Commun ; 11(1): 2686, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483158

RESUMO

Despite growing concern over consequences of global changes, we still know little about potential interactive effects of anthropogenic perturbations and diversity loss on the stability of local communities, especially for taxa other than plants. Here we analyse the relationships among landscape composition, biodiversity and community stability looking at time series of three types of communities, i.e., bats, birds and butterflies, monitored over the years by citizen science programs in France. We show that urban and intensive agricultural landscapes as well as diversity loss destabilize these communities but in different ways: while diversity loss translates into greater population synchrony, urban and intensive agricultural landscapes mainly decrease mean population stability. In addition to highlight the stabilizing effects of diversity on ecologically important but overlooked taxa, our results further reveal new pathways linking anthropogenic activities to diversity and stability.


Assuntos
Agricultura/métodos , Urbanização , Animais , Biodiversidade , Aves/classificação , Borboletas/classificação , Quirópteros/classificação , Conservação dos Recursos Naturais/estatística & dados numéricos , Ecossistema , França , Filogenia , Dinâmica Populacional , Análise de Componente Principal
15.
Ecol Lett ; 22(9): 1349-1356, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286641

RESUMO

The concept of ecological stability occupies a prominent place in both fundamental and applied ecological research. We review decades of work on the topic and examine how our understanding has progressed. We show that our understanding of stability has remained fragmented and is limited largely to simple or simplified systems. There has been a profusion of metrics proposed to quantify stability, of which only a handful are used commonly. Furthermore, studies typically quantify one to two metrics of stability at a time and in response to a single perturbation, with some of the main environmental pressures of today being the least studied. We argue that we need to build on the existing consensus and strong theoretical foundation of the stability concept to better understand its multidimensionality and the interdependencies between metrics, levels of organisation and types of perturbations. Only by doing so can we make progress in the quantification of stability in theory and in practice, and eventually build a more comprehensive understanding of how ecosystems will respond to ongoing environmental change.


Assuntos
Ecologia , Ecossistema , Monitoramento Ambiental
16.
FEMS Microbiol Ecol ; 94(11)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107549

RESUMO

Impact of land use (LU) change on stream environmental conditions and the inhabiting bacterial community remains rarely investigated, especially in tropical montane catchments. We examined the effects of LU change and its legacy along a tropical stream by comparing seasonal patterns of dissolved organic carbon (DOC) / colored dissolved organic matter (CDOM) in relation to variations in structure, diversity and metabolic capacities of particle-attached (PA) and free-living (FL) bacterial communities. We hypothesized that despite seasonal differences, hydrological flows that accumulate allochthonous carbon along the catchment are a major controlling factor of the bacterial community. Surprisingly, local environmental conditions that were largely related to nearby LU and the legacy of LU change were more important for stream bacterial diversity than hydrological connectivity. DOC was strongly correlated with PA richness and diversity. The legacy of LU change between teak plantation and annual crops induced high DOC and high diversity and richness of PA in the adjacent waters, while banana plantations were associated with high diversity of FL. The community structures of both PA and FL differed significantly between seasons. Our results highlight the importance of vicinal LU change and its legacy on aquatic bacterial communities in mixed used tropical watersheds.


Assuntos
Bactérias/isolamento & purificação , Rios/microbiologia , Carbono/análise , Rios/química , Estações do Ano , Clima Tropical
17.
Proc Natl Acad Sci U S A ; 115(10): 2419-2424, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29467292

RESUMO

Current species extinction rates are at unprecedentedly high levels. While human activities can be the direct cause of some extinctions, it is becoming increasingly clear that species extinctions themselves can be the cause of further extinctions, since species affect each other through the network of ecological interactions among them. There is concern that the simplification of ecosystems, due to the loss of species and ecological interactions, increases their vulnerability to such secondary extinctions. It is predicted that more complex food webs will be less vulnerable to secondary extinctions due to greater trophic redundancy that can buffer against the effects of species loss. Here, we demonstrate in a field experiment with replicated plant-insect communities, that the probability of secondary extinctions is indeed smaller in food webs that include trophic redundancy. Harvesting one species of parasitoid wasp led to secondary extinctions of other, indirectly linked, species at the same trophic level. This effect was markedly stronger in simple communities than for the same species within a more complex food web. We show that this is due to functional redundancy in the more complex food webs and confirm this mechanism with a food web simulation model by highlighting the importance of the presence and strength of trophic links providing redundancy to those links that were lost. Our results demonstrate that biodiversity loss, leading to a reduction in redundant interactions, can increase the vulnerability of ecosystems to secondary extinctions, which, when they occur, can then lead to further simplification and run-away extinction cascades.


Assuntos
Biodiversidade , Ecossistema , Extinção Biológica , Cadeia Alimentar , Animais , Ecologia , Humanos , Modelos Teóricos , Vespas/fisiologia
18.
Biol Rev Camb Philos Soc ; 92(2): 684-697, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26756137

RESUMO

Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic units characterizing communities only by species number without accounting for species traits. However, extinctions do not occur at random as there is a clear correlation between extinction risk and species traits. In this review, we assume that large species will be most threatened by extinction and use novel allometric and size-spectrum concepts that include body mass as a primary species trait at the levels of populations and individuals, respectively, to re-assess three classic debates on the relationships between biodiversity and (i) food-web structural complexity, (ii) community dynamic stability, and (iii) ecosystem functioning. Contrasting current expectations, size-structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments. The disruption of natural body-mass distributions maintaining food-web stability may trigger avalanches of secondary extinctions and strong trophic cascades with expected knock-on effects on the functionality of the ecosystems. Therefore, we argue that it is crucial to take into account body size as a species trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size-structured approaches provides an integrative ecological concept that enables a better understanding of each species' unique role across communities and the causes and consequences of biodiversity loss.


Assuntos
Biodiversidade , Extinção Biológica , Ecossistema , Cadeia Alimentar
19.
Ecology ; 97(4): 908-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27220207

RESUMO

Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.


Assuntos
Cadeia Alimentar , Herbivoria/fisiologia , Plantas , Polinização/fisiologia , Animais , Modelos Biológicos , Densidade Demográfica , Especificidade da Espécie , Simbiose
20.
Ecology ; 97(4): 908-917, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28792600

RESUMO

Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.


Assuntos
Herbivoria , Fenômenos Fisiológicos Vegetais , Polinização , Simbiose , Animais , Insetos , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA