RESUMO
Regenerative endodontics represents a paradigm shift in dental therapy, with the potential to not only restore damaged dental tissues but also to preserve the vitality of teeth. At the heart of this innovative approach is cell homing, a technique that harnesses the body's own healing mechanisms by recruiting endogenous stem cells to the site of dental injury for effective tissue regeneration. This review delves into the intricate processes of cell homing in the context of regenerative endodontics, particularly focusing on its application in immature teeth with open apices. It examines the role of bioactive molecules, scaffolds, and growth factors in orchestrating cell migration and differentiation within the root canal space. In addition, the review addresses the current limitations in clinical practice, such as the challenges in completely regenerating the pulp-dentin complex and the unpredictability in long-term outcomes. It also explores future possibilities, including the potential for more refined and effective regenerative strategies. By providing a comprehensive overview of the current state of cell homing in regenerative endodontics, this article aims to contribute to the ongoing development of advanced therapeutic techniques that could revolutionize endodontic treatment and improve patient care.