Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39015954

RESUMO

Food additives are essential constituents of food products in the modern world. The necessity of food processing went up rapidly as to meet requirements including, imparting desirable properties like preservation, enhancement and regulation of color and taste. The methods of identification and analysis of such substances are crucial. With the advancement of technology, a variety of techniques are emerging for this purpose which have many advantages over the existing conventional ways. This review is on different kinds of additives used in the food industry and few prominent methods for their determination ranging from conventional chromatographic techniques to the recently evolved nano-sensor techniques.

2.
Crit Rev Anal Chem ; 53(6): 1133-1173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35001755

RESUMO

Flavonoids are bioactive polyphenolic compounds, widespread in the plant kingdom. Flavonoids possess broad-spectrum pharmacological effects due to their antioxidant, anti-tumor, anti-neoplastic, anti-mutagenic, anti-microbial, anti-inflammatory, anti-allergic, immunomodulatory, and vasodilatory properties. Care must be taken, since excessive consumption of flavonoids may have adverse effects. Therefore, proper identification, quantification and quality evaluations of flavonoids in edible samples are necessary. Electroanalytical approaches have gained much interest for the analysis of redox behavior and quantification of different flavonoids. Compared to various conventional methods, electrochemical techniques for the analysis of flavonoids offer advantages of high sensitivity, selectivity, low cost, simplicity, biocompatibility, easy on-site evaluation, high accuracy, reproducibility, wide linearity of detection, and low detection limits. This review article focuses on the developments in electrochemical sensing of different flavonoids with emphasis on electrode modification strategies to boost the electrocatalytic activity and analytical efficiency.


Assuntos
Antioxidantes , Flavonoides , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Reprodutibilidade dos Testes , Antioxidantes/análise , Técnicas Eletroquímicas/métodos , Plantas/química
3.
J Fluoresc ; 29(4): 1013-1027, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31309390

RESUMO

A fluoro-based Schiff base (E)-2-fluoro-N'-(1-(4-nitrophenyl)ethylidene)benzohydrazide (FNEB) has been synthesized from condensation of 2-fluorobenzohydrazide and 4'-nitroacetophenone catalyzed by glacial acetic acid with ethanol as the solvent. The dipole moment of FNEB in both the electronic states were found using different solvatochromic approaches such as Lippert-Mataga, Bakhshiev, Kawski-Chamma-Viallet, Reichardt and Bilot-Kawski. The experimental ground state dipole moment of FNEB was calculated using Guggenheim-Debye method and theoretical ground state dipole moment using Bilot-Kawski solvatochromic approach. The solvatochromic behavior of the Schiff base in different solvents was studied using absorption and emission spectra. Catalan and Kamlet-Abboud-Taft parameters were used from the multiple linear regression (MLR) analysis in order to study the solute-solvent interaction. The dipole moments were also calculated using Time Dependent-Density Functional Theory (TD-DFT). The chemical stability of FNEB was determined using computational and Cyclic Voltammetry by the use of obtained energy gap between the frontier orbitals. Using the frontier orbitals energy gap, global reactivity parameters were computed. Further, Light Harvesting efficiency was determined to comprehend the photovoltaic property of the Schiff base.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA