Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10187, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986353

RESUMO

The severe outbreak of respiratory coronavirus disease 2019 has increased the significant demand of respiratory mask and its use become ubiquitous worldwide to control this unprecedented respiratory pandemic. The performance of a respiratory mask depends on the efficiency of the filter layer which is mostly made of polypropylene melt blown non-woven (PP-MB-NW). So far, very limited characterization data are available for the PPE-MB-NW in terms to achieve desired particulate filtration efficiency (PFE) against 0.3 µm size, which are imperative in order to facilitate the right selection of PP-MB-NW fabric for the development of mask. In present study, eight different kinds of PP-MB-NW fabrics (Sample A-H) of varied structural morphology are chosen. The different PP-MB-NW were characterized for its pore size and distribution by mercury porosimeter and BET surface area analyzer was explored first time to understand the importance of blind pore in PFE. The PP-MB-NW samples were characterized using scanning electron microscopy so as to know the surface morphology. The filtration efficiency, pressure drop and breathing resistance of various PP-MB-NW fabric samples are investigated in single and double layers combination against the particle size of 0.3, 0.5 and 1 µm. The samples which are having low pore dia, high solid fraction volume, and low air permeability has high filtration efficiency (> 90%) against 0.3 µm particle with high pressure drop (16.3-21.3 mm WC) and breathing resistance (1.42-1.92 mbar) when compared to rest of the samples. This study will pave the way for the judicial selection of right kind of filter layer i.e., PP-MB-NW fabric for the development of mask and it will be greatly helpful in manufacturing of mask in this present pandemic with desired PFE indicating considerable promise for defense against respiratory pandemic.


Assuntos
Filtros de Ar , COVID-19/prevenção & controle , Máscaras , Aerossóis/isolamento & purificação , Filtros de Ar/virologia , Desenho de Equipamento , Humanos , Máscaras/virologia , Tamanho da Partícula , Polipropilenos/química , SARS-CoV-2/isolamento & purificação , Têxteis/virologia
2.
Anal Bioanal Chem ; 412(5): 1097-1110, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31907592

RESUMO

A three-layered composite wipe was fabricated by laminating individual layers of non-woven polypropylene, activated carbon fabric (ACF) and aramid fabric for the sampling and investigation of chemical warfare agents (CWA)-contaminated urban porous and non-porous surfaces. The material of main ACF layer was characterized to ascertain its suitability to act as an efficient adsorbent for the surface wipe sampling. The performance of ACF-based composite wipe was determined by evaluating its extraction efficiency, wiping efficacy and adsorption capacity for the sampling of blister and nerve agent class of CWA-contaminated surfaces using gas chromatography-mass spectrometry (GC-MS). Parameters like amount of wipe required, solvent selection, amount of solvent, time of extraction etc. were optimized to achieve the maximum recovery of contaminating analytes required for the forensic investigations. Overall recoveries of contaminating analytes after sampling and extraction were found to be in the range of 45-85% for all types of surfaces. No breakthrough in wiping process was noticed up to contamination density (CD) 1.6 mg/cm2 for non-porous surface and 3.2 mg/cm2 for porous surfaces. ACF-based wipe was found capable to significantly reduce the vapour hazards from liquid sulphur mustard (HD) and sarin (GB). Contamination from surfaces could be preserved within the wipe up to 15 days for the extended forensic investigation purposes. Limit of detections (LOD) of contaminants was determined in the range of 0.8-6.8 ng/cm2 while limit of quantitation (LOQ) was achieved up to the range of 2.4-14.4 ng/cm2 for wipe sampling of different surfaces. Graphical abstract.


Assuntos
Substâncias para a Guerra Química/análise , Gás de Mostarda/análise , Sarina/análise , Manejo de Espécimes/instrumentação , Têxteis , Adsorção , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Limite de Detecção , Microscopia Eletrônica de Varredura , Padrões de Referência , Solventes/química , Propriedades de Superfície
3.
Parasit Vectors ; 12(1): 375, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358045

RESUMO

BACKGROUND: Insecticidal fabrics are important personal protective measures against mosquitoes, ticks and other disease vectors. In the absence of internationally accepted guidelines, bioefficacy tests have been carried out using continuous exposure and three minutes exposure bioassay methods. Recently, we have reported an improved method for bioefficacy testing of insecticidal fabrics, which involves continuous exposure of mosquitoes to the test fabrics. The present paper reports the comparative evaluation of the outcomes of the continuous exposure bioassay and the three minutes bioassay on the same fabric samples. METHODS: Permethrin content in the treated fabric samples was determined through HPLC analysis and NMR studies were performed to establish the stability of the analyte. Bioefficacy tests were carried out against dengue vector Aedes aegypti and malaria vector Anopheles stephensi as per the improved test method and the three minutes bioassay method. RESULTS: The permethrin doses in the fabric samples ranged from 60 to 3000 mg/m2 and 36.2% of permethrin was retained after 10 washings. The extraction and chromatographic analysis were not found to affect the stability of permethrin. In continuous exposure, all fabric samples showed bioefficacy, as the mean complete knockdown time for both Ae. aegypti (10.5-34.5 min) and An. stephensi (14.5-36.8 min) was ≤ 71.5 min. The same samples were found to be not effective when tested using the three minutes bioassay method, since the knockdown and mortality percentages were well below the required bioefficacy values. The bioefficacy of the fabric samples in terms of complete knockdown time was significantly higher against Ae. aegypti in comparison to An. stephensi. The mean complete knockdown time of Ae. aegypti increased to 48.3 min after 10 washings indicating a significant reduction in bioefficacy. CONCLUSIONS: Bioefficacy testing of the insecticidal fabrics using the improved method resulted in outcomes, which could be correlated better with the permethrin content in the fabric samples. The improved method is more appropriate for the testing of insecticidal fabrics than the three minutes bioassay method. Further evaluation of the improved method using different test arthropods could help in the formulation of specific guidelines for the bioefficacy testing of insecticidal fabrics.


Assuntos
Inseticidas , Controle de Mosquitos/métodos , Mosquitos Vetores , Permetrina , Têxteis/análise , Aedes , Animais , Bioensaio/instrumentação , Disponibilidade Biológica , Dengue/prevenção & controle , Inseticidas/normas , Malária/prevenção & controle , Controle de Mosquitos/instrumentação
4.
Parasitol Res ; 117(10): 3067-3080, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30151634

RESUMO

Insecticidal fabrics are effective personal protective measures against disease vectors and unlike bed nets, these fabrics can provide protection from day-biting mosquitoes and in outdoor environments. The rapid geographical expansion of day-biting mosquitoes and their role in disease transmission necessitate technological interventions, which can be effectively used during the daytime. There is a renewed interest in insecticidal fabrics mainly due to the recent outbreaks and geographical spread of dengue and chikungunya and with the emerging threat of Zika virus infection. Insecticidal fabrics are useful for protection from night-biting mosquitoes and also in situations were sleeping under a bed net is not possible. They are also effective against other biting arthropods like ticks, mites, tsetse flies, sand flies and body lice. Although long-lasting insecticidal fabrics factory-treated with permethrin are now commercially available for military and civilian use, there are no international guidelines for testing their efficacy. The different methods employed so far for testing bioefficacy, washing and quantification of permethrin are compiled in this review. The future prospects and challenges ahead for long-lasting insecticidal fabrics are discussed in the context of the increased threat from day-biting mosquitoes and the diseases transmitted by them. The review focuses on the need for standardisation of the test methods for ensuring adequate bioefficacy and safety to the user. The differences between long-lasting insecticidal nets and long-lasting insecticidal fabrics are elaborated, and the need for a separate registration and licencing procedure for long-lasting insecticidal fabrics is highlighted. A test procedure for insecticidal fabrics is described, which could be used until internationally accepted guidelines are available.


Assuntos
Febre de Chikungunya/prevenção & controle , Dengue/prevenção & controle , Mosquiteiros Tratados com Inseticida , Inseticidas/análise , Controle de Mosquitos/métodos , Infecção por Zika virus/prevenção & controle , Animais , Anopheles/efeitos dos fármacos , Anopheles/virologia , Febre de Chikungunya/transmissão , Dengue/transmissão , Vetores de Doenças , Humanos , Permetrina/análise , Infecção por Zika virus/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA