Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ERJ Open Res ; 10(4)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39104962

RESUMO

Genes involved in cell death, inflammation and viral infection are common to both COPD and IPF. A link to rheumatic disease is unique to COPD, and IPF-specific analyses showed increases in gene expression of keratins, collagens, mucins and MMPs. https://bit.ly/3JoW73H.

2.
Br J Pharmacol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137914

RESUMO

BACKGROUND AND PURPOSE: Toll-like receptors 4 (TLR4) and TLR7/TLR8 play an important role in mediating the inflammatory effects of bacterial and viral pathogens. Interleukin-1 receptor-associated kinase 4 (IRAK4) is an important regulator of signalling by toll-like receptor (TLR) and hence is a potential therapeutic target in diseases characterized by increased lung inflammatory signalling. EXPERIMENTAL APPROACH: We used an established murine model of acute lung inflammation, and studied human lung tissue ex vivo, to investigate the effects of inhibiting IRAK4 on lung inflammatory pathways. KEY RESULTS: We show that TLR4 stimulation produces an inflammatory response characterized by neutrophil influx and tumour necrosis factor-α (TNF-α) production in murine lungs and that these responses are markedly reduced in IRAK4 kinase-dead mice. In addition, we characterize a novel selective IRAK4 inhibitor, BI1543673, and show that this compound can reduce lipopolysaccharide (LPS)-induced airway inflammation in wild-type mice. Additionally, BI1543673 reduced inflammatory responses to both TLR4 and TLR7/8 stimulation in human lung tissue studied ex vivo. CONCLUSION AND IMPLICATIONS: These data demonstrate a key role for IRAK4 signalling in lung inflammation and suggest that IRAK4 inhibition has potential utility to treat lung diseases characterized by inflammatory responses driven through TLR4 and TLR7/8.

3.
Mol Cancer Ther ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186309

RESUMO

Small-cell lung cancer (SCLC) is an aggressive disease with limited treatment options. Fucosyl-GM1 (FucGM1) is a glycolipid overexpressed in the majority of SCLC tumours, but virtually absent from normal healthy tissues. Here, we validate a FucGM1-targeting T cell redirecting bispecific antibody (TCB) for the treatment of SCLC. Over 80% of SCLC patient-derived xenograft (PDX) tissues expressed FucGM1, whilst only three normal human tissues: pituitary, thymus and skin expressed low and focal FucGM1. A FucGM1-targeting TCB (SC134-TCB), based on the Fc-silenced humanised h134 antibody exhibited nanomolar FucGM1 glycolipid and SCLC cell surface binding. SC134-TCB showed potent ex vivo killing of SCLC cell lines with donor-dependent EC50 ranging from 7.2 pmol/L up to 211.0 pmol/L, effectively activating T cells, with picomolar efficiency, coinciding with target-dependent cytokine production such as interferon gamma, interleukin-2 and tumour necrosis factor alpha and robust proliferation of both CD4 and CD8 T cells. The ex vivo SC134-TCB tumour controlling activity translated into an effective in vivo anti-DMS79 tumour therapy, resulting in 100% tumour-free survival in a human PBMC admixed setting and 40% overall survival (55% tumour growth inhibition) with systemically administered human PBMC. Combination treatment with Atezolizumab further enhanced survival and tumour growth inhibition (up to 73%). A ten-fold SC134-TCB dose reduction maintained the strong in vivo anti-tumour impact, translating into 70% overall survival (P<0.0001). Whole blood incubation with SC134-TCB, as well as healthy human primary cells analysis, revealed no target-independent cytokine production. SC134-TCB presents an attractive candidate to deliver an effective immunotherapy treatment option for SCLC patients.

4.
Environ Pollut ; 337: 122561, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742862

RESUMO

Household air pollution caused by inefficient cooking practices causes 4 million deaths a year worldwide. In Nepal, 86% of the rural population use solid fuels for cooking. Over 25% of premature deaths associated with air pollution are respiratory in nature. Here we aimed to identify molecular signatures of different cookstove and fuel type exposures in human airway epithelial cells, to understand the mechanisms mediating cook stove smoke induced lung disease. Primary human airway epithelial cells in submerged culture were exposed to traditional cook stove (TCS), improved cook stove (ICS) and liquefied petroleum gas (LPG) stove smoke extracts. Changes to gene expression, DNA methylation and hydroxymethylation were measured by bulk RNA sequencing and HumanMethylationEPIC BeadChip following oxidative bisulphite conversion, respectively. TCS smoke extract alone reproducibly caused changes in the expression of 52 genes enriched for oxidative stress pathways. TCS, ICS and LPG smoke extract exposures were associated with distinct changes to DNA methylation and hydroxymethylation. A subset of TCS induced genes were associated with differentially methylated and/or hydroxymethylated CpGs sites, and enriched for the ferroptosis pathway and the upstream regulator NFE2L2. DNA methylation and hydroxymethylation changes not associated with a concurrent change in gene expression, were linked to biological processes and molecular pathways important to airway health, including neutrophil function, transforming growth factor beta signalling, GTPase activity, and cell junction organisation. Our data identified differential impacts of TCS, ICS and LPG cook stove smoke on the human airway epithelium transcriptome, DNA methylome and hydroxymethylome and provide further insight into the association between indoor air pollution exposure and chronic lung disease mechanisms.


Assuntos
Poluição do Ar em Ambientes Fechados , Pneumopatias , Petróleo , Humanos , Fumaça/efeitos adversos , Nepal , Metilação de DNA , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Culinária , População Rural , Expressão Gênica
5.
FASEB J ; 35(7): e21300, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165809

RESUMO

GPR126 is an adhesion G protein-coupled receptor which lies on chromosome 6q24. Genetic variants in this region are reproducibly associated with lung function and COPD in genome wide association studies (GWAS). The aims of this study were to define the role of GPR126 in the human lung and in pulmonary disease and identify possible casual variants. Online tools (GTEx and LDlink) identified SNPs which may have effects on GPR126 function/ expression, including missense variant Ser123Gly and an intronic variant that shows eQTL effects on GPR126 expression. GPR126 signaling via cAMP-mediated pathways was identified in human structural airway cells when activated with the tethered agonist, stachel. RNA-seq was used to identify downstream genes/ pathways affected by stachel-mediated GPR126 activation in human airway smooth muscle cells. We identified ~350 differentially expressed genes at 4 and 24 hours post stimulation with ~20% overlap. We identified that genes regulated by GPR126 activation include IL33, CTGF, and SERPINE1, which already have known roles in lung biology. Pathways altered by GPR126 included those involved in cell cycle progression and cell proliferation. Here, we suggest a role for GPR126 in airway remodeling.


Assuntos
Brônquios/fisiologia , Células Epiteliais/fisiologia , Músculo Liso/fisiologia , Mutação de Sentido Incorreto , Doença Pulmonar Obstrutiva Crônica/patologia , Receptores Acoplados a Proteínas G/genética , Sistema Respiratório/fisiopatologia , Brônquios/citologia , Proliferação de Células , Células Cultivadas , Células Epiteliais/citologia , Genômica , Humanos , Músculo Liso/citologia , Doença Pulmonar Obstrutiva Crônica/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
6.
Ann Am Thorac Soc ; 17(6): 688-698, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32079410

RESUMO

Rationale: Exposure to biomass smoke is believed to increase the risk of developing chronic obstructive pulmonary disease. However, little is known about the mechanisms underlying responses to biomass smoke in human lungs.Objectives: This study had two objectives: first, to quantify "real-life" exposures to particulate matter <2 µm in diameter (PM2.5) and carbon monoxide (CO) measured during cooking on stoves in rural areas of Nepal in different geographical settings; and second, to assess the effect of biomass smoke extracts on inflammatory responses in ex vivo human lung tissue.Methods: Personal exposures to PM2.5 and indoor near-stove CO concentrations were measured during cooking on a range of stoves in 103 households in 4 different Nepalese villages situated at altitudes between ∼100 and 4,000 m above sea level. Inflammatory profiles to smoke extracts collected in the field were assessed by incubating extracts with human lung tissue fragments and subsequent Luminex analysis.Results: In households using traditional cooking stoves, the overall mean personal exposure to PM2.5 during cooking was 276.1 µg/m3 (standard deviation [SD], 265 µg/m3), and indoor CO concentration was 16.3 ppm (SD, 19.65 ppm). The overall mean PM2.5 exposure was reduced by 51% (P = 0.04) in households using biomass fuel in improved cook stoves, and 80% (P < 0.0001) in households using liquefied petroleum gas. Similarly, the indoor CO concentration was reduced by 72% (P < 0.001) and 86% (P < 0.0001) in households using improved cook stoves and liquefied petroleum gas, respectively. Significant increases occurred in 7 of the 17 analytes measured after biomass smoke extract stimulation of human lung tissue (IL-8 [interleukin-8], IL-6, TNF-α [tumor necrosis factor-α], IL-1ß, CCL2, CCL3, and CCL13).Conclusions: High levels of real-life exposures to PM2.5 and CO occur during cooking events in rural Nepal. These exposures induce lung inflammation ex vivo, which may partially explain the increased risk of chronic obstructive pulmonary disease in these communities.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monóxido de Carbono/análise , Culinária/instrumentação , Citocinas/análise , Exposição por Inalação/análise , Fumaça , Biomassa , Monitoramento Ambiental/métodos , Humanos , Inflamação/induzido quimicamente , Pulmão/patologia , Nepal , Material Particulado/análise , População Rural
7.
Respir Res ; 20(1): 172, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370853

RESUMO

Genome wide association (GWA) studies have reproducibly identified signals on chromosome 4q24 associated with lung function and COPD. GSTCD (Glutathione S-transferase C-terminal domain containing) represents a candidate causal gene in this locus, however little is currently known about the function of this protein. We set out to further our understanding of the role of GSTCD in cell functions and homeostasis using multiple molecular and cellular approaches in airway relevant cells. Recombinant expression of human GSTCD in conjunction with a GST activity assay did not identify any enzymatic activity for two GSTCD isoforms questioning the assignment of this protein to this family of enzymes. Protein structure analyses identified a potential methyltransferase domain contained within GSTCD, with these enzymes linked to cell viability and apoptosis. Targeted knockdown (siRNA) of GSTCD in bronchial epithelial cells identified a role for GSTCD in cell viability as proliferation rates were not altered. To provide greater insight we completed transcriptomic analyses on cells with GSTCD expression knocked down and identified several differentially expressed genes including those implicated in airway biology; fibrosis e.g. TGFBR1 and inflammation e.g. IL6R. Pathway based transcriptomic analyses identified an over-representation of genes related to adipogenesis which may suggest additional functions for GSTCD. These findings identify potential additional functions for GSTCD in the context of airway biology beyond the hypothesised GST activity and warrant further investigation.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Homeostase/fisiologia , Pulmão/fisiologia , Miócitos de Músculo Liso/fisiologia , Proteínas/genética , Mucosa Respiratória/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Pulmão/citologia , Proteínas/metabolismo , Mucosa Respiratória/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA