Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1353808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463567

RESUMO

The knowledge of pollen morphology, suitable storage condition, and species compatibility is vital for a successful grapevine improvement programme. Ten grape genotypes from three different species, viz., Vitis vinifera L., Vitis parviflora Roxb., and Vitis champini Planc., were studied for their pollen structure and pollen storage with the objective of determining their utilization in grape rootstock improvement programs. Pollen morphology was examined through the use of a scanning electron microscope (SEM). The viability of the pollen was assessed using 2,3,5-triphenyltetrazolium chloride (TTC). In vitro pollen germination was investigated using the semi-solid medium with 10 % sucrose, 100 mg/L boric acid, and 300 mg/L calcium nitrate. The results revealed variations in pollen micro-morphology in 10 genotypes, with distinct pollen dimensions, shapes, and exine ornamentation. However, species-wise, no clear difference was found for these parameters. Pollen of V. parviflora Roxb. and Dogridge was acolporated and did not germinate. The remaining eight genotypes exhibited tricolporated pollen and showed satisfactory in vitro pollen germination. Storage temperature and duration interactions showed that, at room temperature, pollen of most of the grape genotypes can be stored for up to 1 day only with an acceptable pollen germination rate (>30 %). However, storage for up to 7 days was successfully achieved at 4 °C, except for 'Pearl of Csaba'. The most effective storage conditions were found to be at -20 °C and -196 °C (in liquid N2), enabling pollen storage for a period of up to 30 days, and can be used for pollination to overcome the challenge of asynchronous flowering. Four interspecific combinations were studied for their compatibility, among which V. parviflora Roxb. × V. vinifera L. (Pusa Navrang) and V. parviflora Roxb. × V. champini Planc. (Salt Creek) showed high cross-compatibility, offering their potential use for grape rootstock breeding. However, V. parviflora Roxb. × V. vinifera L. (Male Hybrid) recorded the lowest compatibility index among studied crosses. In the case of self-pollinated flowers from V. parviflora Roxb. and V. parviflora Roxb. × V. champini Planc. (Dogridge), pollen failed to germinate on the stigma due to male sterility caused by acolporated pollen. As a result, the flowers of these genotypes functioned as females, which means they are ideal female parents for grape breeding without the need for the tedious process of emasculation.

2.
Front Nutr ; 9: 1017680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245493

RESUMO

Amid environmental crises, a galloping population, and changing food habits, increasing fruit production with nutritional quality is a global challenge. To address this, there is a necessity to exploit the germplasm accessions in order to develop high-yielding varieties/hybrids with good adaptability and high quality fruit under changing environmental and biological conditions. In the study, a total of 33 morpho-biochemical traits enabled an assessment of the genetic variability, diversity, and structure in a collection of 28 diverse germplasm lines of guava. Results showed that highly significant genetic variability existed in the studied traits in the guava germplasm. The coefficient of variation values for the qualitative and quantitative traits varied from 23.5-72.36 to 1.39-58.62%, respectively. Germplasm Thai, Lucknow-49, Punjab Pink, Psidium friedrichsthalianum, and Shweta had the highest fruit weight (359.32 g), ascorbic acid content (197.27 mg/100 g fruit), total phenolic content (186.93 mg GAE/100 g), titratable acidity (0.69 percent), and antioxidant capacity (44.49 µmolTrolox/g), respectively. Fruit weight was positively correlated with ascorbic acid content; however, titratable acidity was negatively correlated with fruit weight. The principal component analysis (PCA) was 84.2% and 93.3% for qualitative and quantitative traits, respectively. Furthermore, K-mean clustering was executed; the population was grouped into three clusters for both traits. Additionally, the dendrogram using agglomerative hierarchical clustering (AHC), where all the germplasm were grouped into four clusters, revealed that among the clusters, clusters III and IV were highly divergent. The high variability, diversity, and structure could be utilized for the breeding programme of guava and also explored for molecular analysis using next-generation technology to enhance the guava yield and nutrition properties and also develop the climate resilient technology to fulfill the existing demand gap and nutrition availability, which could not only mitigate the nutrition requirement but also enhance the easy availability of fruits year-round.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA