Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830318

RESUMO

Small extracellular vesicles isolated from urine (uEVs) are increasingly recognized as potential biomarkers. Meanwhile, different uEV preparation strategies exist. Conventionally, the performance of EV preparation methods is evaluated by single particle quantification, Western blot, and electron microscopy. Recently, we introduced imaging flow cytometry (IFCM) as a next-generation single EV analysis technology. Here, we analyzed uEV samples obtained with different preparation procedures using nanoparticle tracking analysis (NTA), semiquantitative Western blot, and IFCM. IFCM analyses demonstrated that urine contains a predominant CD9+ sEV population, which exceeds CD63+ and CD81+ sEV populations. Furthermore, we demonstrated that the storage temperature of urine samples negatively affects the recovery of CD9+ sEVs. Although overall reduced, the highest CD9+ sEV recovery was obtained from urine samples stored at -80 °C and the lowest from those stored at -20 °C. Upon comparing the yield of the different uEV preparations, incongruencies between NTA and IFCM data became apparent. Results obtained by both NTA and IFCM were consistent with Western blot analyses for EV marker proteins; however, NTA results correlated with the amount of the impurity marker uromodulin. Despite demonstrating that the combination of ultrafiltration and size exclusion chromatography appears as a reliable uEV preparation technique, our data challenge the soundness of traditional NTA for the evaluation of different EV preparation methods.


Assuntos
Vesículas Extracelulares/química , Citometria de Fluxo/métodos , Imagem Molecular/métodos , Urinálise/métodos , Adulto , Biomarcadores/urina , Cromatografia em Gel , Feminino , Voluntários Saudáveis , Humanos , Masculino , Nanopartículas/química , Nanopartículas/ultraestrutura , Tetraspanina 28/urina , Tetraspanina 29/urina , Tetraspanina 30/urina , Ultrafiltração , Urinálise/instrumentação , Urina/química , Uromodulina/urina
2.
Front Immunol ; 11: 606859, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391275

RESUMO

Tumor-derived extracellular vesicles (TEVs) are important regulators of the immune response in cancer; however, most research so far has been carried out using cell culture systems. Immune-competent murine tumor models currently provide the best platform to assess proposed roles of TEVs using in vivo animal models and therefore are important for examining interactions between TEVs and the immune system. In this review, we present the current knowledge on TEVs using in vivo tumor-bearing animal models, with a focus on the role of TEVs in mediating crosstalk between tumor cells and both adaptive and innate immune cells. In particular, we address the question how animal models can clarify the reported heterogeneity of TEV effects in both anti-tumor responses and evasion of immune surveillance. The potential of TEVs in mediating direct antigen-presenting functions supports their potential as cancer vaccine therapeutics, therefore, we provide an overview of key findings of TEV trials that have the potential as novel immunotherapies, and shed light on challenges in the path toward the first in-human trials. We also highlight the important updates on the methods that continue to enhance the rigor and reproducibility of EV studies, particularly in functional animal models.


Assuntos
Vesículas Extracelulares/imunologia , Neoplasias Experimentais/imunologia , Microambiente Tumoral , Imunidade Adaptativa , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Imunidade Inata , Imunoterapia , Camundongos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Transdução de Sinais , Evasão Tumoral
3.
Anticancer Res ; 33(1): 183-90, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23267144

RESUMO

We have previously shown that a 2-chloro-1,4-naphthoquinone derivative (TW-92) induces cell death in leukemia cells. TW-92 exhibited relatively high selectivity towards primary Acute Myeloid Leukemia (AML) cells, as compared to normal mononuclear cells. In view of the selectivity of this family of naphthoquinones, novel chloroaminophenylnaphthoquinone isomers with different methyl substitutions on the phenyl ring were synthesized, and their effect on leukemia cells was tested. These compounds induced cell death in U937 human myeloid leukemia cells, which was prominent following 48 h of culture. Structure-activity relationship studies revealed that TW-74, a novel chloronaphthoquinone with a methyl group at the meta (m) position, was the most active derivative in inducing apoptosis. The mechanism underlying cell death induction by TW-74 was further investigated in U937 cells, a monocytic cell line which serves as a sensitive model of apoptosis induction. TW-74 induced rapid activation of Mitogen Activated Protein Kinases (MAPKs). It caused swelling of isolated rat liver mitochondria and an early reduction of mitochondrial membrane potential in intact cells, indicative of a direct effect on mitochondria. Apoptosis induced by TW-74 was accompanied by cytochrome C release and caspase activation. TW-74 induced down- regulation of (BCL2), an anti-apoptotic protein. Furthermore, TW-74 induced selective dose-dependent cell death in primary B-Chronic Lymphocytic Leukemia (CLL) cells. These findings demonstrate that chloronaphthoquiniones use common as well as diverse mechanisms for the induction of cell death. The data reported here warrant further studies of the utility of TW-74 in the treatment of CLL.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias Hepáticas/efeitos dos fármacos , Naftoquinonas/administração & dosagem , Animais , Caspases/metabolismo , Citocromos c/metabolismo , Células HL-60/efeitos dos fármacos , Humanos , Mitocôndrias Hepáticas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Naftoquinonas/síntese química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Relação Estrutura-Atividade , Células U937/efeitos dos fármacos
4.
Hum Mol Genet ; 20(21): 4187-95, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21831886

RESUMO

Rett syndrome is a neurological, X chromosomal-linked disorder associated with mutations in the MECP2 gene. MeCP2 protein has been proposed to play a role in transcriptional regulation as well as in chromatin architecture. Since MeCP2 mutant cells exhibit surprisingly mild changes in gene expression, we have now explored the possibility that Rett mutations may affect the ability of MeCP2 to bind and organize chromatin. We found that all but one of the 21 missense MeCP2 mutants analyzed accumulated at heterochromatin and about half of them were significantly affected. Furthermore, two-thirds of all mutants showed a significantly decreased ability to cluster heterochromatin. Three mutants containing different proline substitutions (P101H, P101R and P152R) were severely affected only in heterochromatin clustering and located far away from the DNA interface in the MeCP2 methyl-binding domain structure. MeCP2 mutants affected in heterochromatin accumulation further exhibited the shortest residence time on heterochromatin, followed by intermediate binding kinetics for clustering impaired mutants. We propose that different interactions of MeCP2 with methyl cytosines, DNA and likely other heterochromatin proteins are required for MeCP2 function and their dysfunction lead to Rett syndrome.


Assuntos
Cromatina/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Mutação/genética , Síndrome de Rett/genética , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Humanos , Cinética , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA