Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 5(19): 4300-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26664680

RESUMO

Soil food webs comprise a multitude of trophic interactions that can affect the composition and productivity of plant communities. Belowground predators feeding on microbial grazers like Collembola could decelerate nutrient mineralization by reducing microbial turnover in the soil, which in turn could negatively influence plant growth. However, empirical evidences for the ecological significance of belowground predators on nutrient cycling and plant communities are scarce. Here, we manipulated predator density (Hypoaspis aculeifer: predatory mite) with equal densities of three Collembola species as a prey in four functionally dissimilar plant communities in experimental microcosms: grass monoculture (Poa pratensis), herb monoculture (Rumex acetosa), legume monoculture (Trifolium pratense), and all three species as a mixed plant community. Density manipulation of predators allowed us to test for density-mediated effects of belowground predators on Collembola and lower trophic groups. We hypothesized that predator density will reduce Collembola population causing a decrease in nutrient mineralization and hence detrimentally affect plant growth. First, we found a density-dependent population change in predators, that is, an increase in low-density treatments, but a decrease in high-density treatments. Second, prey suppression was lower at high predator density, which caused a shift in the soil microbial community by increasing the fungal: bacterial biomass ratio, and an increase of nitrification rates, particularly in legume monocultures. Despite the increase in nutrient mineralization, legume monocultures performed worse at high predator density. Further, individual grass shoot biomass decreased in monocultures, while it increased in mixed plant communities with increasing predator density, which coincided with elevated soil N uptake by grasses. As a consequence, high predator density significantly increased plant complementarity effects indicating a decrease in interspecific plant competition. These results highlight that belowground predators can relax interspecific plant competition by increasing nutrient mineralization through their density-dependent cascading effects on detritivore and soil microbial communities.

2.
Glob Chang Biol ; 21(11): 4076-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26118993

RESUMO

Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2 , nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.


Assuntos
Biodiversidade , Mudança Climática , Pradaria , Plantas , Microbiologia do Solo , Biomassa , Carbono/metabolismo , Secas
3.
Sci Rep ; 5: 9134, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25773784

RESUMO

Top-down control of prey by predators are magnified in productive ecosystems due to higher sustenance of prey communities. In soil micro-arthropod food webs, plant communities regulate the availability of basal resources like soil microbial biomass. Mixed plant communities are often associated with higher microbial biomass than monocultures. Therefore, top-down control is expected to be higher in soil food webs of mixed plant communities. Moreover, higher predator densities can increase the suppression of prey, which can induce interactive effects between predator densities and plant community composition on prey populations. Here, we tested the effects of predator density (predatory mites) on prey populations (Collembola) in monoculture and mixed plant communities. We hypothesized that top-down control would increase with predator density but only in the mixed plant community. Our results revealed two contrasting patterns of top-down control: stronger top-down control of prey communities in the mixed plant community, but weaker top-down control in plant monocultures in high predator density treatments. As expected, higher microbial community biomass in the mixed plant community sustained sufficiently high prey populations to support high predator density. Our results highlight the roles of plant community composition and predator densities in regulating top-down control of prey in soil food webs.


Assuntos
Biodiversidade , Cadeia Alimentar , Plantas , Solo , Animais , Ecossistema , Comportamento Predatório
4.
Oecologia ; 175(2): 713-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24668014

RESUMO

Global climate warming is one of the key forces driving plant community shifts, such as range shifts of temperate species into boreal forests. As plant community shifts are slow to observe, ecotones, boundaries between two ecosystems, are target areas for providing early evidence of ecological responses to warming. The role of soil fauna is poorly explored in ecotones, although their positive and negative effects on plant species can influence plant community structure. We studied nematode communities in response to experimental warming (ambient, +1.7, +3.4 °C) in soils of closed and open canopy forest in the temperate-boreal ecotone of Minnesota, USA and calculated various established nematode indices. We estimated species-specific coverage of understory herbaceous and shrub plant species from the same experimental plots and tested if changes in the nematode community are associated with plant cover and composition. Individual nematode trophic groups did not differ among warming treatments, but the ratio between microbial-feeding and plant-feeding nematodes increased significantly and consistently with warming in both closed and open canopy areas and at both experimental field sites. The increase in this ratio was positively correlated with total cover of understory plant species, perhaps due to increased predation pressure on soil microorganisms causing higher nutrient availability for plants. Multivariate analyses revealed that temperature treatment, canopy conditions and nematode density consistently shaped understory plant communities across experimental sites. Our findings suggest that warming-induced changes in nematode community structure are associated with shifts in plant community composition and productivity in the temperate-boreal forest ecotones.


Assuntos
Aquecimento Global , Nematoides , Animais , Ecossistema , Minnesota , Nematoides/crescimento & desenvolvimento , Nematoides/fisiologia , Plantas , Dinâmica Populacional , Comportamento Predatório , Solo , Especificidade da Espécie , Temperatura , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA